1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! Trait Resolution. See doc.rs.

pub use self::SelectionError::*;
pub use self::FulfillmentErrorCode::*;
pub use self::Vtable::*;
pub use self::ObligationCauseCode::*;

use middle::subst;
use middle::ty::{mod, Ty};
use middle::infer::InferCtxt;
use std::slice::Iter;
use std::rc::Rc;
use syntax::ast;
use syntax::codemap::{Span, DUMMY_SP};
use util::ppaux::Repr;

pub use self::error_reporting::report_fulfillment_errors;
pub use self::fulfill::{FulfillmentContext, RegionObligation};
pub use self::project::MismatchedProjectionTypes;
pub use self::project::normalize;
pub use self::project::Normalized;
pub use self::select::SelectionContext;
pub use self::select::SelectionCache;
pub use self::select::{MethodMatchResult, MethodMatched, MethodAmbiguous, MethodDidNotMatch};
pub use self::select::{MethodMatchedData}; // intentionally don't export variants
pub use self::util::elaborate_predicates;
pub use self::util::trait_ref_for_builtin_bound;
pub use self::util::supertraits;
pub use self::util::Supertraits;
pub use self::util::transitive_bounds;

mod coherence;
mod error_reporting;
mod fulfill;
mod project;
mod select;
mod util;

/// An `Obligation` represents some trait reference (e.g. `int:Eq`) for
/// which the vtable must be found.  The process of finding a vtable is
/// called "resolving" the `Obligation`. This process consists of
/// either identifying an `impl` (e.g., `impl Eq for int`) that
/// provides the required vtable, or else finding a bound that is in
/// scope. The eventual result is usually a `Selection` (defined below).
#[deriving(Clone)]
pub struct Obligation<'tcx, T> {
    pub cause: ObligationCause<'tcx>,
    pub recursion_depth: uint,
    pub predicate: T,
}

pub type PredicateObligation<'tcx> = Obligation<'tcx, ty::Predicate<'tcx>>;
pub type TraitObligation<'tcx> = Obligation<'tcx, ty::PolyTraitPredicate<'tcx>>;

/// Why did we incur this obligation? Used for error reporting.
#[deriving(Clone)]
pub struct ObligationCause<'tcx> {
    pub span: Span,

    // The id of the fn body that triggered this obligation. This is
    // used for region obligations to determine the precise
    // environment in which the region obligation should be evaluated
    // (in particular, closures can add new assumptions). See the
    // field `region_obligations` of the `FulfillmentContext` for more
    // information.
    pub body_id: ast::NodeId,

    pub code: ObligationCauseCode<'tcx>
}

#[deriving(Clone)]
pub enum ObligationCauseCode<'tcx> {
    /// Not well classified or should be obvious from span.
    MiscObligation,

    /// In an impl of trait X for type Y, type Y must
    /// also implement all supertraits of X.
    ItemObligation(ast::DefId),

    /// Obligation incurred due to an object cast.
    ObjectCastObligation(/* Object type */ Ty<'tcx>),

    /// Various cases where expressions must be sized/copy/etc:
    AssignmentLhsSized,        // L = X implies that L is Sized
    StructInitializerSized,    // S { ... } must be Sized
    VariableType(ast::NodeId), // Type of each variable must be Sized
    ReturnType,                // Return type must be Sized
    RepeatVec,                 // [T,..n] --> T must be Copy

    // Captures of variable the given id by a closure (span is the
    // span of the closure)
    ClosureCapture(ast::NodeId, Span, ty::BuiltinBound),

    // Types of fields (other than the last) in a struct must be sized.
    FieldSized,

    // Only Sized types can be made into objects
    ObjectSized,

    // static items must have `Sync` type
    SharedStatic,

    BuiltinDerivedObligation(DerivedObligationCause<'tcx>),

    ImplDerivedObligation(DerivedObligationCause<'tcx>),
}

#[deriving(Clone)]
pub struct DerivedObligationCause<'tcx> {
    /// The trait reference of the parent obligation that led to the
    /// current obligation. Note that only trait obligations lead to
    /// derived obligations, so we just store the trait reference here
    /// directly.
    parent_trait_ref: ty::PolyTraitRef<'tcx>,

    /// The parent trait had this cause
    parent_code: Rc<ObligationCauseCode<'tcx>>
}

pub type Obligations<'tcx, O> = subst::VecPerParamSpace<Obligation<'tcx, O>>;
pub type PredicateObligations<'tcx> = subst::VecPerParamSpace<PredicateObligation<'tcx>>;
pub type TraitObligations<'tcx> = subst::VecPerParamSpace<TraitObligation<'tcx>>;

pub type Selection<'tcx> = Vtable<'tcx, PredicateObligation<'tcx>>;

#[deriving(Clone,Show)]
pub enum SelectionError<'tcx> {
    Unimplemented,
    Overflow,
    OutputTypeParameterMismatch(ty::PolyTraitRef<'tcx>,
                                ty::PolyTraitRef<'tcx>,
                                ty::type_err<'tcx>),
}

pub struct FulfillmentError<'tcx> {
    pub obligation: PredicateObligation<'tcx>,
    pub code: FulfillmentErrorCode<'tcx>
}

#[deriving(Clone)]
pub enum FulfillmentErrorCode<'tcx> {
    CodeSelectionError(SelectionError<'tcx>),
    CodeProjectionError(MismatchedProjectionTypes<'tcx>),
    CodeAmbiguity,
}

/// When performing resolution, it is typically the case that there
/// can be one of three outcomes:
///
/// - `Ok(Some(r))`: success occurred with result `r`
/// - `Ok(None)`: could not definitely determine anything, usually due
///   to inconclusive type inference.
/// - `Err(e)`: error `e` occurred
pub type SelectionResult<'tcx, T> = Result<Option<T>, SelectionError<'tcx>>;

/// Given the successful resolution of an obligation, the `Vtable`
/// indicates where the vtable comes from. Note that while we call this
/// a "vtable", it does not necessarily indicate dynamic dispatch at
/// runtime. `Vtable` instances just tell the compiler where to find
/// methods, but in generic code those methods are typically statically
/// dispatched -- only when an object is constructed is a `Vtable`
/// instance reified into an actual vtable.
///
/// For example, the vtable may be tied to a specific impl (case A),
/// or it may be relative to some bound that is in scope (case B).
///
///
/// ```
/// impl<T:Clone> Clone<T> for Option<T> { ... } // Impl_1
/// impl<T:Clone> Clone<T> for Box<T> { ... }    // Impl_2
/// impl Clone for int { ... }             // Impl_3
///
/// fn foo<T:Clone>(concrete: Option<Box<int>>,
///                 param: T,
///                 mixed: Option<T>) {
///
///    // Case A: Vtable points at a specific impl. Only possible when
///    // type is concretely known. If the impl itself has bounded
///    // type parameters, Vtable will carry resolutions for those as well:
///    concrete.clone(); // Vtable(Impl_1, [Vtable(Impl_2, [Vtable(Impl_3)])])
///
///    // Case B: Vtable must be provided by caller. This applies when
///    // type is a type parameter.
///    param.clone();    // VtableParam
///
///    // Case C: A mix of cases A and B.
///    mixed.clone();    // Vtable(Impl_1, [VtableParam])
/// }
/// ```
///
/// ### The type parameter `N`
///
/// See explanation on `VtableImplData`.
#[deriving(Show,Clone)]
pub enum Vtable<'tcx, N> {
    /// Vtable identifying a particular impl.
    VtableImpl(VtableImplData<'tcx, N>),

    /// Successful resolution to an obligation provided by the caller
    /// for some type parameter.
    VtableParam,

    /// Successful resolution for a builtin trait.
    VtableBuiltin(VtableBuiltinData<N>),

    /// Vtable automatically generated for an unboxed closure. The def
    /// ID is the ID of the closure expression. This is a `VtableImpl`
    /// in spirit, but the impl is generated by the compiler and does
    /// not appear in the source.
    VtableUnboxedClosure(ast::DefId, subst::Substs<'tcx>),

    /// Same as above, but for a fn pointer type with the given signature.
    VtableFnPointer(ty::Ty<'tcx>),
}

/// Identifies a particular impl in the source, along with a set of
/// substitutions from the impl's type/lifetime parameters. The
/// `nested` vector corresponds to the nested obligations attached to
/// the impl's type parameters.
///
/// The type parameter `N` indicates the type used for "nested
/// obligations" that are required by the impl. During type check, this
/// is `Obligation`, as one might expect. During trans, however, this
/// is `()`, because trans only requires a shallow resolution of an
/// impl, and nested obligations are satisfied later.
#[deriving(Clone)]
pub struct VtableImplData<'tcx, N> {
    pub impl_def_id: ast::DefId,
    pub substs: subst::Substs<'tcx>,
    pub nested: subst::VecPerParamSpace<N>
}

#[deriving(Show,Clone)]
pub struct VtableBuiltinData<N> {
    pub nested: subst::VecPerParamSpace<N>
}

/// True if neither the trait nor self type is local. Note that `impl_def_id` must refer to an impl
/// of a trait, not an inherent impl.
pub fn is_orphan_impl(tcx: &ty::ctxt,
                      impl_def_id: ast::DefId)
                      -> bool
{
    !coherence::impl_is_local(tcx, impl_def_id)
}

/// True if there exist types that satisfy both of the two given impls.
pub fn overlapping_impls(infcx: &InferCtxt,
                         impl1_def_id: ast::DefId,
                         impl2_def_id: ast::DefId)
                         -> bool
{
    coherence::impl_can_satisfy(infcx, impl1_def_id, impl2_def_id) &&
    coherence::impl_can_satisfy(infcx, impl2_def_id, impl1_def_id)
}

/// Creates predicate obligations from the generic bounds.
pub fn predicates_for_generics<'tcx>(tcx: &ty::ctxt<'tcx>,
                                     cause: ObligationCause<'tcx>,
                                     generic_bounds: &ty::GenericBounds<'tcx>)
                                     -> PredicateObligations<'tcx>
{
    util::predicates_for_generics(tcx, cause, 0, generic_bounds)
}

/// Determines whether the type `ty` is known to meet `bound` and
/// returns true if so. Returns false if `ty` either does not meet
/// `bound` or is not known to meet bound (note that this is
/// conservative towards *no impl*, which is the opposite of the
/// `evaluate` methods).
pub fn type_known_to_meet_builtin_bound<'a,'tcx>(infcx: &InferCtxt<'a,'tcx>,
                                                 param_env: &ty::ParameterEnvironment<'tcx>,
                                                 ty: Ty<'tcx>,
                                                 bound: ty::BuiltinBound)
                                                 -> bool
{
    debug!("type_known_to_meet_builtin_bound(ty={}, bound={})",
           ty.repr(infcx.tcx),
           bound);

    let mut fulfill_cx = FulfillmentContext::new();

    // We can use dummy values here because we won't report any errors
    // that result nor will we pay any mind to region obligations that arise
    // (there shouldn't really be any anyhow).
    let cause = ObligationCause::misc(DUMMY_SP, ast::DUMMY_NODE_ID);

    fulfill_cx.register_builtin_bound(infcx, ty, bound, cause);

    // Note: we only assume something is `Copy` if we can
    // *definitively* show that it implements `Copy`. Otherwise,
    // assume it is move; linear is always ok.
    let result = fulfill_cx.select_all_or_error(infcx, param_env, infcx.tcx).is_ok();

    debug!("type_known_to_meet_builtin_bound: ty={} bound={} result={}",
           ty.repr(infcx.tcx),
           bound,
           result);

    result
}

impl<'tcx,O> Obligation<'tcx,O> {
    pub fn new(cause: ObligationCause<'tcx>,
               trait_ref: O)
               -> Obligation<'tcx, O>
    {
        Obligation { cause: cause,
                     recursion_depth: 0,
                     predicate: trait_ref }
    }

    fn with_depth(cause: ObligationCause<'tcx>,
                  recursion_depth: uint,
                  trait_ref: O)
                  -> Obligation<'tcx, O>
    {
        Obligation { cause: cause,
                     recursion_depth: recursion_depth,
                     predicate: trait_ref }
    }

    pub fn misc(span: Span, body_id: ast::NodeId, trait_ref: O) -> Obligation<'tcx, O> {
        Obligation::new(ObligationCause::misc(span, body_id), trait_ref)
    }

    pub fn with<P>(&self, value: P) -> Obligation<'tcx,P> {
        Obligation { cause: self.cause.clone(),
                     recursion_depth: self.recursion_depth,
                     predicate: value }
    }
}

impl<'tcx> ObligationCause<'tcx> {
    pub fn new(span: Span,
               body_id: ast::NodeId,
               code: ObligationCauseCode<'tcx>)
               -> ObligationCause<'tcx> {
        ObligationCause { span: span, body_id: body_id, code: code }
    }

    pub fn misc(span: Span, body_id: ast::NodeId) -> ObligationCause<'tcx> {
        ObligationCause { span: span, body_id: body_id, code: MiscObligation }
    }

    pub fn dummy() -> ObligationCause<'tcx> {
        ObligationCause { span: DUMMY_SP, body_id: 0, code: MiscObligation }
    }
}

impl<'tcx, N> Vtable<'tcx, N> {
    pub fn iter_nested(&self) -> Iter<N> {
        match *self {
            VtableImpl(ref i) => i.iter_nested(),
            VtableFnPointer(..) => (&[]).iter(),
            VtableUnboxedClosure(..) => (&[]).iter(),
            VtableParam => (&[]).iter(),
            VtableBuiltin(ref i) => i.iter_nested(),
        }
    }

    pub fn map_nested<M, F>(&self, op: F) -> Vtable<'tcx, M> where F: FnMut(&N) -> M {
        match *self {
            VtableImpl(ref i) => VtableImpl(i.map_nested(op)),
            VtableFnPointer(ref sig) => VtableFnPointer((*sig).clone()),
            VtableUnboxedClosure(d, ref s) => VtableUnboxedClosure(d, s.clone()),
            VtableParam => VtableParam,
            VtableBuiltin(ref b) => VtableBuiltin(b.map_nested(op)),
        }
    }

    pub fn map_move_nested<M, F>(self, op: F) -> Vtable<'tcx, M> where
        F: FnMut(N) -> M,
    {
        match self {
            VtableImpl(i) => VtableImpl(i.map_move_nested(op)),
            VtableFnPointer(sig) => VtableFnPointer(sig),
            VtableUnboxedClosure(d, s) => VtableUnboxedClosure(d, s),
            VtableParam => VtableParam,
            VtableBuiltin(no) => VtableBuiltin(no.map_move_nested(op)),
        }
    }
}

impl<'tcx, N> VtableImplData<'tcx, N> {
    pub fn iter_nested(&self) -> Iter<N> {
        self.nested.iter()
    }

    pub fn map_nested<M, F>(&self, op: F) -> VtableImplData<'tcx, M> where
        F: FnMut(&N) -> M,
    {
        VtableImplData {
            impl_def_id: self.impl_def_id,
            substs: self.substs.clone(),
            nested: self.nested.map(op)
        }
    }

    pub fn map_move_nested<M, F>(self, op: F) -> VtableImplData<'tcx, M> where
        F: FnMut(N) -> M,
    {
        let VtableImplData { impl_def_id, substs, nested } = self;
        VtableImplData {
            impl_def_id: impl_def_id,
            substs: substs,
            nested: nested.map_move(op)
        }
    }
}

impl<N> VtableBuiltinData<N> {
    pub fn iter_nested(&self) -> Iter<N> {
        self.nested.iter()
    }

    pub fn map_nested<M, F>(&self, op: F) -> VtableBuiltinData<M> where F: FnMut(&N) -> M {
        VtableBuiltinData {
            nested: self.nested.map(op)
        }
    }

    pub fn map_move_nested<M, F>(self, op: F) -> VtableBuiltinData<M> where
        F: FnMut(N) -> M,
    {
        VtableBuiltinData {
            nested: self.nested.map_move(op)
        }
    }
}

impl<'tcx> FulfillmentError<'tcx> {
    fn new(obligation: PredicateObligation<'tcx>,
           code: FulfillmentErrorCode<'tcx>)
           -> FulfillmentError<'tcx>
    {
        FulfillmentError { obligation: obligation, code: code }
    }

    pub fn is_overflow(&self) -> bool {
        match self.code {
            CodeAmbiguity => false,
            CodeSelectionError(Overflow) => true,
            CodeSelectionError(_) => false,
            CodeProjectionError(_) => false,
        }
    }
}

impl<'tcx> TraitObligation<'tcx> {
    fn self_ty(&self) -> Ty<'tcx> {
        self.predicate.0.self_ty()
    }
}