1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

pub use self::VarValue::*;

use std::kinds::marker;

use middle::ty::{expected_found, IntVarValue};
use middle::ty::{mod, Ty};
use middle::infer::{uok, ures};
use middle::infer::InferCtxt;
use std::cell::RefCell;
use std::fmt::Show;
use syntax::ast;
use util::ppaux::Repr;
use util::snapshot_vec as sv;

/// This trait is implemented by any type that can serve as a type
/// variable. We call such variables *unification keys*. For example,
/// this trait is implemented by `IntVid`, which represents integral
/// variables.
///
/// Each key type has an associated value type `V`. For example, for
/// `IntVid`, this is `Option<IntVarValue>`, representing some
/// (possibly not yet known) sort of integer.
///
/// Implementations of this trait are at the end of this file.
pub trait UnifyKey<'tcx, V> : Clone + Show + PartialEq + Repr<'tcx> {
    fn index(&self) -> uint;

    fn from_index(u: uint) -> Self;

    // Given an inference context, returns the unification table
    // appropriate to this key type.
    fn unification_table<'v>(infcx: &'v InferCtxt)
                             -> &'v RefCell<UnificationTable<Self,V>>;

    fn tag(k: Option<Self>) -> &'static str;
}

/// Trait for valid types that a type variable can be set to. Note that
/// this is typically not the end type that the value will take on, but
/// rather an `Option` wrapper (where `None` represents a variable
/// whose value is not yet set).
///
/// Implementations of this trait are at the end of this file.
pub trait UnifyValue<'tcx> : Clone + Repr<'tcx> + PartialEq {
}

/// Value of a unification key. We implement Tarjan's union-find
/// algorithm: when two keys are unified, one of them is converted
/// into a "redirect" pointing at the other. These redirects form a
/// DAG: the roots of the DAG (nodes that are not redirected) are each
/// associated with a value of type `V` and a rank. The rank is used
/// to keep the DAG relatively balanced, which helps keep the running
/// time of the algorithm under control. For more information, see
/// <http://en.wikipedia.org/wiki/Disjoint-set_data_structure>.
#[deriving(PartialEq,Clone)]
pub enum VarValue<K,V> {
    Redirect(K),
    Root(V, uint),
}

/// Table of unification keys and their values.
pub struct UnificationTable<K,V> {
    /// Indicates the current value of each key.
    values: sv::SnapshotVec<VarValue<K,V>,(),Delegate>,
}

/// At any time, users may snapshot a unification table.  The changes
/// made during the snapshot may either be *committed* or *rolled back*.
pub struct Snapshot<K> {
    // Link snapshot to the key type `K` of the table.
    marker: marker::CovariantType<K>,
    snapshot: sv::Snapshot,
}

/// Internal type used to represent the result of a `get()` operation.
/// Conveys the current root and value of the key.
pub struct Node<K,V> {
    pub key: K,
    pub value: V,
    pub rank: uint,
}

#[deriving(Copy)]
pub struct Delegate;

// We can't use V:LatticeValue, much as I would like to,
// because frequently the pattern is that V=Option<U> for some
// other type parameter U, and we have no way to say
// Option<U>:LatticeValue.

impl<'tcx, V:PartialEq+Clone+Repr<'tcx>, K:UnifyKey<'tcx, V>> UnificationTable<K,V> {
    pub fn new() -> UnificationTable<K,V> {
        UnificationTable {
            values: sv::SnapshotVec::new(Delegate),
        }
    }

    /// Starts a new snapshot. Each snapshot must be either
    /// rolled back or committed in a "LIFO" (stack) order.
    pub fn snapshot(&mut self) -> Snapshot<K> {
        Snapshot { marker: marker::CovariantType::<K>,
                   snapshot: self.values.start_snapshot() }
    }

    /// Reverses all changes since the last snapshot. Also
    /// removes any keys that have been created since then.
    pub fn rollback_to(&mut self, snapshot: Snapshot<K>) {
        debug!("{}: rollback_to()", UnifyKey::tag(None::<K>));
        self.values.rollback_to(snapshot.snapshot);
    }

    /// Commits all changes since the last snapshot. Of course, they
    /// can still be undone if there is a snapshot further out.
    pub fn commit(&mut self, snapshot: Snapshot<K>) {
        debug!("{}: commit()", UnifyKey::tag(None::<K>));
        self.values.commit(snapshot.snapshot);
    }

    pub fn new_key(&mut self, value: V) -> K {
        let index = self.values.push(Root(value, 0));
        let k = UnifyKey::from_index(index);
        debug!("{}: created new key: {}",
               UnifyKey::tag(None::<K>),
               k);
        k
    }

    /// Find the root node for `vid`. This uses the standard union-find algorithm with path
    /// compression: http://en.wikipedia.org/wiki/Disjoint-set_data_structure
    pub fn get(&mut self, tcx: &ty::ctxt, vid: K) -> Node<K,V> {
        let index = vid.index();
        let value = (*self.values.get(index)).clone();
        match value {
            Redirect(redirect) => {
                let node: Node<K,V> = self.get(tcx, redirect.clone());
                if node.key != redirect {
                    // Path compression
                    self.values.set(index, Redirect(node.key.clone()));
                }
                node
            }
            Root(value, rank) => {
                Node { key: vid, value: value, rank: rank }
            }
        }
    }

    fn is_root(&self, key: &K) -> bool {
        match *self.values.get(key.index()) {
            Redirect(..) => false,
            Root(..) => true,
        }
    }

    /// Sets the value for `vid` to `new_value`. `vid` MUST be a root node! Also, we must be in the
    /// middle of a snapshot.
    pub fn set(&mut self,
               tcx: &ty::ctxt<'tcx>,
               key: K,
               new_value: VarValue<K,V>)
    {
        assert!(self.is_root(&key));

        debug!("Updating variable {} to {}",
               key.repr(tcx),
               new_value.repr(tcx));

        self.values.set(key.index(), new_value);
    }

    /// Either redirects node_a to node_b or vice versa, depending on the relative rank. Returns
    /// the new root and rank. You should then update the value of the new root to something
    /// suitable.
    pub fn unify(&mut self,
                 tcx: &ty::ctxt<'tcx>,
                 node_a: &Node<K,V>,
                 node_b: &Node<K,V>)
                 -> (K, uint)
    {
        debug!("unify(node_a(id={}, rank={}), node_b(id={}, rank={}))",
               node_a.key.repr(tcx),
               node_a.rank,
               node_b.key.repr(tcx),
               node_b.rank);

        if node_a.rank > node_b.rank {
            // a has greater rank, so a should become b's parent,
            // i.e., b should redirect to a.
            self.set(tcx, node_b.key.clone(), Redirect(node_a.key.clone()));
            (node_a.key.clone(), node_a.rank)
        } else if node_a.rank < node_b.rank {
            // b has greater rank, so a should redirect to b.
            self.set(tcx, node_a.key.clone(), Redirect(node_b.key.clone()));
            (node_b.key.clone(), node_b.rank)
        } else {
            // If equal, redirect one to the other and increment the
            // other's rank.
            assert_eq!(node_a.rank, node_b.rank);
            self.set(tcx, node_b.key.clone(), Redirect(node_a.key.clone()));
            (node_a.key.clone(), node_a.rank + 1)
        }
    }
}

impl<K,V> sv::SnapshotVecDelegate<VarValue<K,V>,()> for Delegate {
    fn reverse(&mut self, _: &mut Vec<VarValue<K,V>>, _: ()) {
        panic!("Nothing to reverse");
    }
}

///////////////////////////////////////////////////////////////////////////
// Code to handle simple keys like ints, floats---anything that
// doesn't have a subtyping relationship we need to worry about.

/// Indicates a type that does not have any kind of subtyping
/// relationship.
pub trait SimplyUnifiable<'tcx> : Clone + PartialEq + Repr<'tcx> {
    fn to_type(&self, tcx: &ty::ctxt<'tcx>) -> Ty<'tcx>;
    fn to_type_err(expected_found<Self>) -> ty::type_err<'tcx>;
}

pub fn err<'tcx, V:SimplyUnifiable<'tcx>>(a_is_expected: bool,
                                          a_t: V,
                                          b_t: V)
                                          -> ures<'tcx> {
    if a_is_expected {
        Err(SimplyUnifiable::to_type_err(
            ty::expected_found {expected: a_t, found: b_t}))
    } else {
        Err(SimplyUnifiable::to_type_err(
            ty::expected_found {expected: b_t, found: a_t}))
    }
}

pub trait InferCtxtMethodsForSimplyUnifiableTypes<'tcx, V:SimplyUnifiable<'tcx>,
                                                  K:UnifyKey<'tcx, Option<V>>> {
    fn simple_vars(&self,
                   a_is_expected: bool,
                   a_id: K,
                   b_id: K)
                   -> ures<'tcx>;
    fn simple_var_t(&self,
                    a_is_expected: bool,
                    a_id: K,
                    b: V)
                    -> ures<'tcx>;
    fn probe_var(&self, a_id: K) -> Option<Ty<'tcx>>;
}

impl<'a,'tcx,V:SimplyUnifiable<'tcx>,K:UnifyKey<'tcx, Option<V>>>
    InferCtxtMethodsForSimplyUnifiableTypes<'tcx, V, K> for InferCtxt<'a, 'tcx>
{
    /// Unifies two simple keys. Because simple keys do not have any subtyping relationships, if
    /// both keys have already been associated with a value, then those two values must be the
    /// same.
    fn simple_vars(&self,
                   a_is_expected: bool,
                   a_id: K,
                   b_id: K)
                   -> ures<'tcx>
    {
        let tcx = self.tcx;
        let table = UnifyKey::unification_table(self);
        let node_a = table.borrow_mut().get(tcx, a_id);
        let node_b = table.borrow_mut().get(tcx, b_id);
        let a_id = node_a.key.clone();
        let b_id = node_b.key.clone();

        if a_id == b_id { return uok(); }

        let combined = {
            match (&node_a.value, &node_b.value) {
                (&None, &None) => {
                    None
                }
                (&Some(ref v), &None) | (&None, &Some(ref v)) => {
                    Some((*v).clone())
                }
                (&Some(ref v1), &Some(ref v2)) => {
                    if *v1 != *v2 {
                        return err(a_is_expected, (*v1).clone(), (*v2).clone())
                    }
                    Some((*v1).clone())
                }
            }
        };

        let (new_root, new_rank) = table.borrow_mut().unify(tcx,
                                                            &node_a,
                                                            &node_b);
        table.borrow_mut().set(tcx, new_root, Root(combined, new_rank));
        return Ok(())
    }

    /// Sets the value of the key `a_id` to `b`. Because simple keys do not have any subtyping
    /// relationships, if `a_id` already has a value, it must be the same as `b`.
    fn simple_var_t(&self,
                    a_is_expected: bool,
                    a_id: K,
                    b: V)
                    -> ures<'tcx>
    {
        let tcx = self.tcx;
        let table = UnifyKey::unification_table(self);
        let node_a = table.borrow_mut().get(tcx, a_id);
        let a_id = node_a.key.clone();

        match node_a.value {
            None => {
                table.borrow_mut().set(tcx, a_id, Root(Some(b), node_a.rank));
                return Ok(());
            }

            Some(ref a_t) => {
                if *a_t == b {
                    return Ok(());
                } else {
                    return err(a_is_expected, (*a_t).clone(), b);
                }
            }
        }
    }

    fn probe_var(&self, a_id: K) -> Option<Ty<'tcx>> {
        let tcx = self.tcx;
        let table = UnifyKey::unification_table(self);
        let node_a = table.borrow_mut().get(tcx, a_id);
        match node_a.value {
            None => None,
            Some(ref a_t) => Some(a_t.to_type(tcx))
        }
    }
}

///////////////////////////////////////////////////////////////////////////

// Integral type keys

impl<'tcx> UnifyKey<'tcx, Option<IntVarValue>> for ty::IntVid {
    fn index(&self) -> uint { self.index as uint }

    fn from_index(i: uint) -> ty::IntVid { ty::IntVid { index: i as u32 } }

    fn unification_table<'v>(infcx: &'v InferCtxt)
        -> &'v RefCell<UnificationTable<ty::IntVid, Option<IntVarValue>>>
    {
        return &infcx.int_unification_table;
    }

    fn tag(_: Option<ty::IntVid>) -> &'static str {
        "IntVid"
    }
}

impl<'tcx> SimplyUnifiable<'tcx> for IntVarValue {
    fn to_type(&self, tcx: &ty::ctxt<'tcx>) -> Ty<'tcx> {
        match *self {
            ty::IntType(i) => ty::mk_mach_int(tcx, i),
            ty::UintType(i) => ty::mk_mach_uint(tcx, i),
        }
    }

    fn to_type_err(err: expected_found<IntVarValue>) -> ty::type_err<'tcx> {
        return ty::terr_int_mismatch(err);
    }
}

impl<'tcx> UnifyValue<'tcx> for Option<IntVarValue> { }

// Floating point type keys

impl<'tcx> UnifyKey<'tcx, Option<ast::FloatTy>> for ty::FloatVid {
    fn index(&self) -> uint { self.index as uint }

    fn from_index(i: uint) -> ty::FloatVid { ty::FloatVid { index: i as u32 } }

    fn unification_table<'v>(infcx: &'v InferCtxt)
        -> &'v RefCell<UnificationTable<ty::FloatVid, Option<ast::FloatTy>>>
    {
        return &infcx.float_unification_table;
    }

    fn tag(_: Option<ty::FloatVid>) -> &'static str {
        "FloatVid"
    }
}

impl<'tcx> UnifyValue<'tcx> for Option<ast::FloatTy> {
}

impl<'tcx> SimplyUnifiable<'tcx> for ast::FloatTy {
    fn to_type(&self, tcx: &ty::ctxt<'tcx>) -> Ty<'tcx> {
        ty::mk_mach_float(tcx, *self)
    }

    fn to_type_err(err: expected_found<ast::FloatTy>) -> ty::type_err<'tcx> {
        ty::terr_float_mismatch(err)
    }
}

impl<'tcx, K:Repr<'tcx>, V:Repr<'tcx>> Repr<'tcx> for VarValue<K,V> {
    fn repr(&self, tcx: &ty::ctxt<'tcx>) -> String {
        match *self {
            Redirect(ref k) => format!("Redirect({})", k.repr(tcx)),
            Root(ref v, r) => format!("Root({}, {})", v.repr(tcx), r)
        }
    }
}