Primitive Type f32
[-]
[+]
Operations and constants for 32-bits floats (f32
type)
Trait Implementations
impl FloatMath for f32
fn ldexp(x: f32, exp: int) -> f32
Constructs a floating point number by multiplying x
by 2 raised to the
power of exp
fn frexp(self) -> (f32, int)
Breaks the number into a normalized fraction and a base-2 exponent, satisfying:
self = x * pow(2, exp)
0.5 <= abs(x) < 1.0
fn next_after(self, other: f32) -> f32
Returns the next representable floating-point value in the direction of
other
.
fn max(self, other: f32) -> f32
fn min(self, other: f32) -> f32
fn abs_sub(self, other: f32) -> f32
fn cbrt(self) -> f32
fn hypot(self, other: f32) -> f32
fn sin(self) -> f32
fn cos(self) -> f32
fn tan(self) -> f32
fn asin(self) -> f32
fn acos(self) -> f32
fn atan(self) -> f32
fn atan2(self, other: f32) -> f32
fn sin_cos(self) -> (f32, f32)
Simultaneously computes the sine and cosine of the number
fn exp_m1(self) -> f32
Returns the exponential of the number, minus 1
, in a way that is
accurate even if the number is close to zero
fn ln_1p(self) -> f32
Returns the natural logarithm of the number plus 1
(ln(1+n)
) more
accurately than if the operations were performed separately
fn sinh(self) -> f32
fn cosh(self) -> f32
fn tanh(self) -> f32
fn asinh(self) -> f32
Inverse hyperbolic sine
Returns
- on success, the inverse hyperbolic sine of
self
will be returned self
ifself
is0.0
,-0.0
,INFINITY
, orNEG_INFINITY
NAN
ifself
isNAN
fn acosh(self) -> f32
Inverse hyperbolic cosine
Returns
- on success, the inverse hyperbolic cosine of
self
will be returned INFINITY
ifself
isINFINITY
NAN
ifself
isNAN
orself < 1.0
(includingNEG_INFINITY
)
fn atanh(self) -> f32
Inverse hyperbolic tangent
Returns
- on success, the inverse hyperbolic tangent of
self
will be returned self
ifself
is0.0
or-0.0
INFINITY
ifself
is1.0
NEG_INFINITY
ifself
is-1.0
NAN
if theself
isNAN
or outside the domain of-1.0 <= self <= 1.0
(includingINFINITY
andNEG_INFINITY
)
impl Float for f32
fn nan() -> f32
fn infinity() -> f32
fn neg_infinity() -> f32
fn zero() -> f32
fn neg_zero() -> f32
fn one() -> f32
fn is_nan(self) -> bool
Returns true
if the number is NaN.
fn is_infinite(self) -> bool
Returns true
if the number is infinite.
fn is_finite(self) -> bool
Returns true
if the number is neither infinite or NaN.
fn is_normal(self) -> bool
Returns true
if the number is neither zero, infinite, subnormal or NaN.
fn classify(self) -> FpCategory
Returns the floating point category of the number. If only one property is going to be tested, it is generally faster to use the specific predicate instead.
fn mantissa_digits(Option<f32>) -> uint
fn digits(Option<f32>) -> uint
fn epsilon() -> f32
fn min_exp(Option<f32>) -> int
fn max_exp(Option<f32>) -> int
fn min_10_exp(Option<f32>) -> int
fn max_10_exp(Option<f32>) -> int
fn min_value() -> f32
fn min_pos_value(Option<f32>) -> f32
fn max_value() -> f32
fn integer_decode(self) -> (u64, i16, i8)
Returns the mantissa, exponent and sign as integers.
fn floor(self) -> f32
Rounds towards minus infinity.
fn ceil(self) -> f32
Rounds towards plus infinity.
fn round(self) -> f32
Rounds to nearest integer. Rounds half-way cases away from zero.
fn trunc(self) -> f32
Returns the integer part of the number (rounds towards zero).
fn fract(self) -> f32
The fractional part of the number, satisfying:
fn main() { use core::num::Float; let x = 1.65f32; assert!(x == x.trunc() + x.fract()) }use core::num::Float; let x = 1.65f32; assert!(x == x.trunc() + x.fract())
fn abs(self) -> f32
Computes the absolute value of self
. Returns Float::nan()
if the
number is Float::nan()
.
fn signum(self) -> f32
Returns a number that represents the sign of self
.
1.0
if the number is positive,+0.0
orFloat::infinity()
-1.0
if the number is negative,-0.0
orFloat::neg_infinity()
Float::nan()
if the number isFloat::nan()
fn is_positive(self) -> bool
Returns true
if self
is positive, including +0.0
and
Float::infinity()
.
fn is_negative(self) -> bool
Returns true
if self
is negative, including -0.0
and
Float::neg_infinity()
.
fn mul_add(self, a: f32, b: f32) -> f32
Fused multiply-add. Computes (self * a) + b
with only one rounding
error. This produces a more accurate result with better performance than
a separate multiplication operation followed by an add.
fn recip(self) -> f32
Returns the reciprocal (multiplicative inverse) of the number.
fn powi(self, n: i32) -> f32
fn powf(self, n: f32) -> f32
fn sqrt2() -> f32
sqrt(2.0)
fn frac_1_sqrt2() -> f32
1.0 / sqrt(2.0)
fn sqrt(self) -> f32
fn rsqrt(self) -> f32
fn pi() -> f32
Archimedes' constant
fn two_pi() -> f32
2.0 * pi
fn frac_pi_2() -> f32
pi / 2.0
fn frac_pi_3() -> f32
pi / 3.0
fn frac_pi_4() -> f32
pi / 4.0
fn frac_pi_6() -> f32
pi / 6.0
fn frac_pi_8() -> f32
pi / 8.0
fn frac_1_pi() -> f32
1.0 / pi
fn frac_2_pi() -> f32
2.0 / pi
fn frac_2_sqrtpi() -> f32
2.0 / sqrt(pi)
fn e() -> f32
Euler's number
fn log2_e() -> f32
log2(e)
fn log10_e() -> f32
log10(e)
fn ln_2() -> f32
ln(2.0)
fn ln_10() -> f32
ln(10.0)
fn exp(self) -> f32
Returns the exponential of the number.
fn exp2(self) -> f32
Returns 2 raised to the power of the number.
fn ln(self) -> f32
Returns the natural logarithm of the number.
fn log(self, base: f32) -> f32
Returns the logarithm of the number with respect to an arbitrary base.
fn log2(self) -> f32
Returns the base 2 logarithm of the number.
fn log10(self) -> f32
Returns the base 10 logarithm of the number.
fn to_degrees(self) -> f32
Converts to degrees, assuming the number is in radians.
fn to_radians(self) -> f32
Converts to radians, assuming the number is in degrees.
impl ToPrimitive for f32
fn to_int(&self) -> Option<int>
fn to_i8(&self) -> Option<i8>
fn to_i16(&self) -> Option<i16>
fn to_i32(&self) -> Option<i32>
fn to_i64(&self) -> Option<i64>
fn to_uint(&self) -> Option<uint>
fn to_u8(&self) -> Option<u8>
fn to_u16(&self) -> Option<u16>
fn to_u32(&self) -> Option<u32>
fn to_u64(&self) -> Option<u64>
fn to_f32(&self) -> Option<f32>
fn to_f64(&self) -> Option<f64>
fn to_int(&self) -> Option<int>
fn to_i8(&self) -> Option<i8>
fn to_i16(&self) -> Option<i16>
fn to_i32(&self) -> Option<i32>
fn to_uint(&self) -> Option<uint>
fn to_u8(&self) -> Option<u8>
fn to_u16(&self) -> Option<u16>
fn to_u32(&self) -> Option<u32>
fn to_f32(&self) -> Option<f32>
fn to_f64(&self) -> Option<f64>
impl FromPrimitive for f32
fn from_int(n: int) -> Option<f32>
fn from_i8(n: i8) -> Option<f32>
fn from_i16(n: i16) -> Option<f32>
fn from_i32(n: i32) -> Option<f32>
fn from_i64(n: i64) -> Option<f32>
fn from_uint(n: uint) -> Option<f32>
fn from_u8(n: u8) -> Option<f32>
fn from_u16(n: u16) -> Option<f32>
fn from_u32(n: u32) -> Option<f32>
fn from_u64(n: u64) -> Option<f32>
fn from_f32(n: f32) -> Option<f32>
fn from_f64(n: f64) -> Option<f32>
fn from_int(int) -> Option<f32>
fn from_i8(i8) -> Option<f32>
fn from_i16(i16) -> Option<f32>
fn from_i32(i32) -> Option<f32>
fn from_uint(uint) -> Option<f32>
fn from_u8(u8) -> Option<f32>
fn from_u16(u16) -> Option<f32>
fn from_u32(u32) -> Option<f32>
fn from_f32(f32) -> Option<f32>
fn from_f64(f64) -> Option<f32>
impl NumCast for f32
fn from<N: ToPrimitive>(n: N) -> Option<f32>
impl FromStr for f32
fn from_str(src: &str) -> Option<f32>
Convert a string in base 10 to a float. Accepts an optional decimal exponent.
This function accepts strings such as
- '3.14'
- '+3.14', equivalent to '3.14'
- '-3.14'
- '2.5E10', or equivalently, '2.5e10'
- '2.5E-10'
- '.' (understood as 0)
- '5.'
- '.5', or, equivalently, '0.5'
- '+inf', 'inf', '-inf', 'NaN'
Leading and trailing whitespace represent an error.
Arguments
- src - A string
Return value
None
if the string did not represent a valid number. Otherwise,
Some(n)
where n
is the floating-point number represented by src
.
impl FromStrRadix for f32
fn from_str_radix(src: &str, radix: uint) -> Option<f32>
Convert a string in a given base to a float.
Due to possible conflicts, this function does not accept
the special values inf
, -inf
, +inf
and NaN
, nor
does it recognize exponents of any kind.
Leading and trailing whitespace represent an error.
Arguments
- src - A string
- radix - The base to use. Must lie in the range [2 .. 36]
Return value
None
if the string did not represent a valid number. Otherwise,
Some(n)
where n
is the floating-point number represented by src
.