Struct std::collections::hash_map::HashMapExperimental [-]  [+] [src]

pub struct HashMap<K, V, H = RandomSipHasher> {
    // some fields omitted
}

A hash map implementation which uses linear probing with Robin Hood bucket stealing.

The hashes are all keyed by the task-local random number generator on creation by default. This means that the ordering of the keys is randomized, but makes the tables more resistant to denial-of-service attacks (Hash DoS). This behaviour can be overridden with one of the constructors.

It is required that the keys implement the Eq and Hash traits, although this can frequently be achieved by using #[deriving(Eq, Hash)].

Relevant papers/articles:

  1. Pedro Celis. "Robin Hood Hashing"
  2. Emmanuel Goossaert. "Robin Hood hashing"
  3. Emmanuel Goossaert. "Robin Hood hashing: backward shift deletion"

Example

fn main() { use std::collections::HashMap; // type inference lets us omit an explicit type signature (which // would be `HashMap<&str, &str>` in this example). let mut book_reviews = HashMap::new(); // review some books. book_reviews.insert("Adventures of Huckleberry Finn", "My favorite book."); book_reviews.insert("Grimms' Fairy Tales", "Masterpiece."); book_reviews.insert("Pride and Prejudice", "Very enjoyable."); book_reviews.insert("The Adventures of Sherlock Holmes", "Eye lyked it alot."); // check for a specific one. if !book_reviews.contains_key(&("Les Misérables")) { println!("We've got {} reviews, but Les Misérables ain't one.", book_reviews.len()); } // oops, this review has a lot of spelling mistakes, let's delete it. book_reviews.remove(&("The Adventures of Sherlock Holmes")); // look up the values associated with some keys. let to_find = ["Pride and Prejudice", "Alice's Adventure in Wonderland"]; for book in to_find.iter() { match book_reviews.get(book) { Some(review) => println!("{}: {}", *book, *review), None => println!("{} is unreviewed.", *book) } } // iterate over everything. for (book, review) in book_reviews.iter() { println!("{}: \"{}\"", *book, *review); } }
use std::collections::HashMap;

// type inference lets us omit an explicit type signature (which
// would be `HashMap<&str, &str>` in this example).
let mut book_reviews = HashMap::new();

// review some books.
book_reviews.insert("Adventures of Huckleberry Finn",    "My favorite book.");
book_reviews.insert("Grimms' Fairy Tales",               "Masterpiece.");
book_reviews.insert("Pride and Prejudice",               "Very enjoyable.");
book_reviews.insert("The Adventures of Sherlock Holmes", "Eye lyked it alot.");

// check for a specific one.
if !book_reviews.contains_key(&("Les Misérables")) {
    println!("We've got {} reviews, but Les Misérables ain't one.",
             book_reviews.len());
}

// oops, this review has a lot of spelling mistakes, let's delete it.
book_reviews.remove(&("The Adventures of Sherlock Holmes"));

// look up the values associated with some keys.
let to_find = ["Pride and Prejudice", "Alice's Adventure in Wonderland"];
for book in to_find.iter() {
    match book_reviews.get(book) {
        Some(review) => println!("{}: {}", *book, *review),
        None => println!("{} is unreviewed.", *book)
    }
}

// iterate over everything.
for (book, review) in book_reviews.iter() {
    println!("{}: \"{}\"", *book, *review);
}

The easiest way to use HashMap with a custom type as key is to derive Eq and Hash. We must also derive PartialEq.

fn main() { use std::collections::HashMap; #[deriving(Hash, Eq, PartialEq, Show)] struct Viking { name: String, country: String, } impl Viking { /// Create a new Viking. fn new(name: &str, country: &str) -> Viking { Viking { name: name.to_string(), country: country.to_string() } } } // Use a HashMap to store the vikings' health points. let mut vikings = HashMap::new(); vikings.insert(Viking::new("Einar", "Norway"), 25u); vikings.insert(Viking::new("Olaf", "Denmark"), 24u); vikings.insert(Viking::new("Harald", "Iceland"), 12u); // Use derived implementation to print the status of the vikings. for (viking, health) in vikings.iter() { println!("{} has {} hp", viking, health); } }
use std::collections::HashMap;

#[deriving(Hash, Eq, PartialEq, Show)]
struct Viking {
    name: String,
    country: String,
}

impl Viking {
    /// Create a new Viking.
    fn new(name: &str, country: &str) -> Viking {
        Viking { name: name.to_string(), country: country.to_string() }
    }
}

// Use a HashMap to store the vikings' health points.
let mut vikings = HashMap::new();

vikings.insert(Viking::new("Einar", "Norway"), 25u);
vikings.insert(Viking::new("Olaf", "Denmark"), 24u);
vikings.insert(Viking::new("Harald", "Iceland"), 12u);

// Use derived implementation to print the status of the vikings.
for (viking, health) in vikings.iter() {
    println!("{} has {} hp", viking, health);
}

Methods

impl<K: Hash + Eq, V> HashMap<K, V, RandomSipHasher>

fn new() -> HashMap<K, V, RandomSipHasher>

Create an empty HashMap.

Example

fn main() { use std::collections::HashMap; let mut map: HashMap<&str, int> = HashMap::new(); }
use std::collections::HashMap;
let mut map: HashMap<&str, int> = HashMap::new();

fn with_capacity(capacity: uint) -> HashMap<K, V, RandomSipHasher>

Creates an empty hash map with the given initial capacity.

Example

fn main() { use std::collections::HashMap; let mut map: HashMap<&str, int> = HashMap::with_capacity(10); }
use std::collections::HashMap;
let mut map: HashMap<&str, int> = HashMap::with_capacity(10);

impl<K: Eq + Hash<S>, V, S, H: Hasher<S>> HashMap<K, V, H>

fn with_hasher(hasher: H) -> HashMap<K, V, H>

Creates an empty hashmap which will use the given hasher to hash keys.

The creates map has the default initial capacity.

Example

fn main() { use std::collections::HashMap; use std::hash::sip::SipHasher; let h = SipHasher::new(); let mut map = HashMap::with_hasher(h); map.insert(1i, 2u); }
use std::collections::HashMap;
use std::hash::sip::SipHasher;

let h = SipHasher::new();
let mut map = HashMap::with_hasher(h);
map.insert(1i, 2u);

fn with_capacity_and_hasher(capacity: uint, hasher: H) -> HashMap<K, V, H>

Create an empty HashMap with space for at least capacity elements, using hasher to hash the keys.

Warning: hasher is normally randomly generated, and is designed to allow HashMaps to be resistant to attacks that cause many collisions and very poor performance. Setting it manually using this function can expose a DoS attack vector.

Example

fn main() { use std::collections::HashMap; use std::hash::sip::SipHasher; let h = SipHasher::new(); let mut map = HashMap::with_capacity_and_hasher(10, h); map.insert(1i, 2u); }
use std::collections::HashMap;
use std::hash::sip::SipHasher;

let h = SipHasher::new();
let mut map = HashMap::with_capacity_and_hasher(10, h);
map.insert(1i, 2u);

fn capacity(&self) -> uint

Returns the number of elements the map can hold without reallocating.

Example

fn main() { use std::collections::HashMap; let map: HashMap<int, int> = HashMap::with_capacity(100); assert!(map.capacity() >= 100); }
use std::collections::HashMap;
let map: HashMap<int, int> = HashMap::with_capacity(100);
assert!(map.capacity() >= 100);

fn reserve(&mut self, additional: uint)

Reserves capacity for at least additional more elements to be inserted in the HashMap. The collection may reserve more space to avoid frequent reallocations.

Panics

Panics if the new allocation size overflows uint.

Example

fn main() { use std::collections::HashMap; let mut map: HashMap<&str, int> = HashMap::new(); map.reserve(10); }
use std::collections::HashMap;
let mut map: HashMap<&str, int> = HashMap::new();
map.reserve(10);

fn shrink_to_fit(&mut self)

Shrinks the capacity of the map as much as possible. It will drop down as much as possible while maintaining the internal rules and possibly leaving some space in accordance with the resize policy.

Example

fn main() { use std::collections::HashMap; let mut map: HashMap<int, int> = HashMap::with_capacity(100); map.insert(1, 2); map.insert(3, 4); assert!(map.capacity() >= 100); map.shrink_to_fit(); assert!(map.capacity() >= 2); }
use std::collections::HashMap;

let mut map: HashMap<int, int> = HashMap::with_capacity(100);
map.insert(1, 2);
map.insert(3, 4);
assert!(map.capacity() >= 100);
map.shrink_to_fit();
assert!(map.capacity() >= 2);

fn contains_key_equiv<Q: Hash<S> + Equiv<K> + ?Sized>(&self, key: &Q) -> bool

Deprecated: use contains_key and BorrowFrom instead.

fn find_equiv<'a, Q: Hash<S> + Equiv<K> + ?Sized>(&'a self, k: &Q) -> Option<&'a V>

Deprecated: use get and BorrowFrom instead.

fn pop_equiv<Q: Hash<S> + Equiv<K> + ?Sized>(&mut self, k: &Q) -> Option<V>

Deprecated: use remove and BorrowFrom instead.

fn keys<'a>(&'a self) -> Keys<'a, K, V>

An iterator visiting all keys in arbitrary order. Iterator element type is &'a K.

Example

fn main() { use std::collections::HashMap; let mut map = HashMap::new(); map.insert("a", 1i); map.insert("b", 2); map.insert("c", 3); for key in map.keys() { println!("{}", key); } }
use std::collections::HashMap;

let mut map = HashMap::new();
map.insert("a", 1i);
map.insert("b", 2);
map.insert("c", 3);

for key in map.keys() {
    println!("{}", key);
}

fn values<'a>(&'a self) -> Values<'a, K, V>

An iterator visiting all values in arbitrary order. Iterator element type is &'a V.

Example

fn main() { use std::collections::HashMap; let mut map = HashMap::new(); map.insert("a", 1i); map.insert("b", 2); map.insert("c", 3); for key in map.values() { println!("{}", key); } }
use std::collections::HashMap;

let mut map = HashMap::new();
map.insert("a", 1i);
map.insert("b", 2);
map.insert("c", 3);

for key in map.values() {
    println!("{}", key);
}

fn iter(&self) -> Iter<K, V>

An iterator visiting all key-value pairs in arbitrary order. Iterator element type is (&'a K, &'a V).

Example

fn main() { use std::collections::HashMap; let mut map = HashMap::new(); map.insert("a", 1i); map.insert("b", 2); map.insert("c", 3); for (key, val) in map.iter() { println!("key: {} val: {}", key, val); } }
use std::collections::HashMap;

let mut map = HashMap::new();
map.insert("a", 1i);
map.insert("b", 2);
map.insert("c", 3);

for (key, val) in map.iter() {
    println!("key: {} val: {}", key, val);
}

fn iter_mut(&mut self) -> IterMut<K, V>

An iterator visiting all key-value pairs in arbitrary order, with mutable references to the values. Iterator element type is (&'a K, &'a mut V).

Example

fn main() { use std::collections::HashMap; let mut map = HashMap::new(); map.insert("a", 1i); map.insert("b", 2); map.insert("c", 3); // Update all values for (_, val) in map.iter_mut() { *val *= 2; } for (key, val) in map.iter() { println!("key: {} val: {}", key, val); } }
use std::collections::HashMap;

let mut map = HashMap::new();
map.insert("a", 1i);
map.insert("b", 2);
map.insert("c", 3);

// Update all values
for (_, val) in map.iter_mut() {
    *val *= 2;
}

for (key, val) in map.iter() {
    println!("key: {} val: {}", key, val);
}

fn into_iter(self) -> IntoIter<K, V>

Creates a consuming iterator, that is, one that moves each key-value pair out of the map in arbitrary order. The map cannot be used after calling this.

Example

fn main() { use std::collections::HashMap; let mut map = HashMap::new(); map.insert("a", 1i); map.insert("b", 2); map.insert("c", 3); // Not possible with .iter() let vec: Vec<(&str, int)> = map.into_iter().collect(); }
use std::collections::HashMap;

let mut map = HashMap::new();
map.insert("a", 1i);
map.insert("b", 2);
map.insert("c", 3);

// Not possible with .iter()
let vec: Vec<(&str, int)> = map.into_iter().collect();

fn entry<'a>(&'a mut self, key: K) -> Entry<'a, K, V>

Gets the given key's corresponding entry in the map for in-place manipulation

fn len(&self) -> uint

Return the number of elements in the map.

Example

fn main() { use std::collections::HashMap; let mut a = HashMap::new(); assert_eq!(a.len(), 0); a.insert(1u, "a"); assert_eq!(a.len(), 1); }
use std::collections::HashMap;

let mut a = HashMap::new();
assert_eq!(a.len(), 0);
a.insert(1u, "a");
assert_eq!(a.len(), 1);

fn is_empty(&self) -> bool

Return true if the map contains no elements.

Example

fn main() { use std::collections::HashMap; let mut a = HashMap::new(); assert!(a.is_empty()); a.insert(1u, "a"); assert!(!a.is_empty()); }
use std::collections::HashMap;

let mut a = HashMap::new();
assert!(a.is_empty());
a.insert(1u, "a");
assert!(!a.is_empty());

fn drain(&mut self) -> Drain<K, V>

Clears the map, returning all key-value pairs as an iterator. Keeps the allocated memory for reuse.

Example

fn main() { use std::collections::HashMap; let mut a = HashMap::new(); a.insert(1u, "a"); a.insert(2u, "b"); for (k, v) in a.drain().take(1) { assert!(k == 1 || k == 2); assert!(v == "a" || v == "b"); } assert!(a.is_empty()); }
use std::collections::HashMap;

let mut a = HashMap::new();
a.insert(1u, "a");
a.insert(2u, "b");

for (k, v) in a.drain().take(1) {
    assert!(k == 1 || k == 2);
    assert!(v == "a" || v == "b");
}

assert!(a.is_empty());

fn clear(&mut self)

Clears the map, removing all key-value pairs. Keeps the allocated memory for reuse.

Example

fn main() { use std::collections::HashMap; let mut a = HashMap::new(); a.insert(1u, "a"); a.clear(); assert!(a.is_empty()); }
use std::collections::HashMap;

let mut a = HashMap::new();
a.insert(1u, "a");
a.clear();
assert!(a.is_empty());

fn find(&self, k: &K) -> Option<&V>

Deprecated: Renamed to get.

fn get<Q: ?Sized>(&self, k: &Q) -> Option<&V> where Q: Hash<S> + Eq + BorrowFrom<K>

Returns a reference to the value corresponding to the key.

The key may be any borrowed form of the map's key type, but Hash and Eq on the borrowed form must match those for the key type.

Example

fn main() { use std::collections::HashMap; let mut map = HashMap::new(); map.insert(1u, "a"); assert_eq!(map.get(&1), Some(&"a")); assert_eq!(map.get(&2), None); }
use std::collections::HashMap;

let mut map = HashMap::new();
map.insert(1u, "a");
assert_eq!(map.get(&1), Some(&"a"));
assert_eq!(map.get(&2), None);

fn contains_key<Q: ?Sized>(&self, k: &Q) -> bool where Q: Hash<S> + Eq + BorrowFrom<K>

Returns true if the map contains a value for the specified key.

The key may be any borrowed form of the map's key type, but Hash and Eq on the borrowed form must match those for the key type.

Example

fn main() { use std::collections::HashMap; let mut map = HashMap::new(); map.insert(1u, "a"); assert_eq!(map.contains_key(&1), true); assert_eq!(map.contains_key(&2), false); }
use std::collections::HashMap;

let mut map = HashMap::new();
map.insert(1u, "a");
assert_eq!(map.contains_key(&1), true);
assert_eq!(map.contains_key(&2), false);

fn find_mut(&mut self, k: &K) -> Option<&mut V>

Deprecated: Renamed to get_mut.

fn get_mut<Q: ?Sized>(&mut self, k: &Q) -> Option<&mut V> where Q: Hash<S> + Eq + BorrowFrom<K>

Returns a mutable reference to the value corresponding to the key.

The key may be any borrowed form of the map's key type, but Hash and Eq on the borrowed form must match those for the key type.

Example

fn main() { use std::collections::HashMap; let mut map = HashMap::new(); map.insert(1u, "a"); match map.get_mut(&1) { Some(x) => *x = "b", None => (), } assert_eq!(map[1], "b"); }
use std::collections::HashMap;

let mut map = HashMap::new();
map.insert(1u, "a");
match map.get_mut(&1) {
    Some(x) => *x = "b",
    None => (),
}
assert_eq!(map[1], "b");

fn swap(&mut self, k: K, v: V) -> Option<V>

Deprecated: Renamed to insert.

fn insert(&mut self, k: K, v: V) -> Option<V>

Inserts a key-value pair from the map. If the key already had a value present in the map, that value is returned. Otherwise, None is returned.

Example

fn main() { use std::collections::HashMap; let mut map = HashMap::new(); assert_eq!(map.insert(37u, "a"), None); assert_eq!(map.is_empty(), false); map.insert(37, "b"); assert_eq!(map.insert(37, "c"), Some("b")); assert_eq!(map[37], "c"); }
use std::collections::HashMap;

let mut map = HashMap::new();
assert_eq!(map.insert(37u, "a"), None);
assert_eq!(map.is_empty(), false);

map.insert(37, "b");
assert_eq!(map.insert(37, "c"), Some("b"));
assert_eq!(map[37], "c");

fn pop(&mut self, k: &K) -> Option<V>

Deprecated: Renamed to remove.

fn remove<Q: ?Sized>(&mut self, k: &Q) -> Option<V> where Q: Hash<S> + Eq + BorrowFrom<K>

Removes a key from the map, returning the value at the key if the key was previously in the map.

The key may be any borrowed form of the map's key type, but Hash and Eq on the borrowed form must match those for the key type.

Example

fn main() { use std::collections::HashMap; let mut map = HashMap::new(); map.insert(1u, "a"); assert_eq!(map.remove(&1), Some("a")); assert_eq!(map.remove(&1), None); }
use std::collections::HashMap;

let mut map = HashMap::new();
map.insert(1u, "a");
assert_eq!(map.remove(&1), Some("a"));
assert_eq!(map.remove(&1), None);

impl<K: Eq + Hash<S>, V: Clone, S, H: Hasher<S>> HashMap<K, V, H>

fn find_copy(&self, k: &K) -> Option<V>

Deprecated: Use map.get(k).cloned().

Return a copy of the value corresponding to the key.

fn get_copy(&self, k: &K) -> V

Deprecated: Use map[k].clone().

Return a copy of the value corresponding to the key.

impl<K: Hash + Eq, V> HashMap<K, V, RandomSipHasher>

fn new() -> HashMap<K, V, RandomSipHasher>

Create an empty HashMap.

Example

fn main() { use std::collections::HashMap; let mut map: HashMap<&str, int> = HashMap::new(); }
use std::collections::HashMap;
let mut map: HashMap<&str, int> = HashMap::new();

fn with_capacity(capacity: uint) -> HashMap<K, V, RandomSipHasher>

Creates an empty hash map with the given initial capacity.

Example

fn main() { use std::collections::HashMap; let mut map: HashMap<&str, int> = HashMap::with_capacity(10); }
use std::collections::HashMap;
let mut map: HashMap<&str, int> = HashMap::with_capacity(10);

impl<K: Eq + Hash<S>, V, S, H: Hasher<S>> HashMap<K, V, H>

fn with_hasher(hasher: H) -> HashMap<K, V, H>

Creates an empty hashmap which will use the given hasher to hash keys.

The creates map has the default initial capacity.

Example

fn main() { use std::collections::HashMap; use std::hash::sip::SipHasher; let h = SipHasher::new(); let mut map = HashMap::with_hasher(h); map.insert(1i, 2u); }
use std::collections::HashMap;
use std::hash::sip::SipHasher;

let h = SipHasher::new();
let mut map = HashMap::with_hasher(h);
map.insert(1i, 2u);

fn with_capacity_and_hasher(capacity: uint, hasher: H) -> HashMap<K, V, H>

Create an empty HashMap with space for at least capacity elements, using hasher to hash the keys.

Warning: hasher is normally randomly generated, and is designed to allow HashMaps to be resistant to attacks that cause many collisions and very poor performance. Setting it manually using this function can expose a DoS attack vector.

Example

fn main() { use std::collections::HashMap; use std::hash::sip::SipHasher; let h = SipHasher::new(); let mut map = HashMap::with_capacity_and_hasher(10, h); map.insert(1i, 2u); }
use std::collections::HashMap;
use std::hash::sip::SipHasher;

let h = SipHasher::new();
let mut map = HashMap::with_capacity_and_hasher(10, h);
map.insert(1i, 2u);

fn capacity(&self) -> uint

Returns the number of elements the map can hold without reallocating.

Example

fn main() { use std::collections::HashMap; let map: HashMap<int, int> = HashMap::with_capacity(100); assert!(map.capacity() >= 100); }
use std::collections::HashMap;
let map: HashMap<int, int> = HashMap::with_capacity(100);
assert!(map.capacity() >= 100);

fn reserve(&mut self, additional: uint)

Reserves capacity for at least additional more elements to be inserted in the HashMap. The collection may reserve more space to avoid frequent reallocations.

Panics

Panics if the new allocation size overflows uint.

Example

fn main() { use std::collections::HashMap; let mut map: HashMap<&str, int> = HashMap::new(); map.reserve(10); }
use std::collections::HashMap;
let mut map: HashMap<&str, int> = HashMap::new();
map.reserve(10);

fn shrink_to_fit(&mut self)

Shrinks the capacity of the map as much as possible. It will drop down as much as possible while maintaining the internal rules and possibly leaving some space in accordance with the resize policy.

Example

fn main() { use std::collections::HashMap; let mut map: HashMap<int, int> = HashMap::with_capacity(100); map.insert(1, 2); map.insert(3, 4); assert!(map.capacity() >= 100); map.shrink_to_fit(); assert!(map.capacity() >= 2); }
use std::collections::HashMap;

let mut map: HashMap<int, int> = HashMap::with_capacity(100);
map.insert(1, 2);
map.insert(3, 4);
assert!(map.capacity() >= 100);
map.shrink_to_fit();
assert!(map.capacity() >= 2);

fn contains_key_equiv<Q: Hash<S> + Equiv<K> + ?Sized>(&self, key: &Q) -> bool

Deprecated: use contains_key and BorrowFrom instead.

fn find_equiv<'a, Q: Hash<S> + Equiv<K> + ?Sized>(&'a self, k: &Q) -> Option<&'a V>

Deprecated: use get and BorrowFrom instead.

fn pop_equiv<Q: Hash<S> + Equiv<K> + ?Sized>(&mut self, k: &Q) -> Option<V>

Deprecated: use remove and BorrowFrom instead.

fn keys<'a>(&'a self) -> Keys<'a, K, V>

An iterator visiting all keys in arbitrary order. Iterator element type is &'a K.

Example

fn main() { use std::collections::HashMap; let mut map = HashMap::new(); map.insert("a", 1i); map.insert("b", 2); map.insert("c", 3); for key in map.keys() { println!("{}", key); } }
use std::collections::HashMap;

let mut map = HashMap::new();
map.insert("a", 1i);
map.insert("b", 2);
map.insert("c", 3);

for key in map.keys() {
    println!("{}", key);
}

fn values<'a>(&'a self) -> Values<'a, K, V>

An iterator visiting all values in arbitrary order. Iterator element type is &'a V.

Example

fn main() { use std::collections::HashMap; let mut map = HashMap::new(); map.insert("a", 1i); map.insert("b", 2); map.insert("c", 3); for key in map.values() { println!("{}", key); } }
use std::collections::HashMap;

let mut map = HashMap::new();
map.insert("a", 1i);
map.insert("b", 2);
map.insert("c", 3);

for key in map.values() {
    println!("{}", key);
}

fn iter(&self) -> Iter<K, V>

An iterator visiting all key-value pairs in arbitrary order. Iterator element type is (&'a K, &'a V).

Example

fn main() { use std::collections::HashMap; let mut map = HashMap::new(); map.insert("a", 1i); map.insert("b", 2); map.insert("c", 3); for (key, val) in map.iter() { println!("key: {} val: {}", key, val); } }
use std::collections::HashMap;

let mut map = HashMap::new();
map.insert("a", 1i);
map.insert("b", 2);
map.insert("c", 3);

for (key, val) in map.iter() {
    println!("key: {} val: {}", key, val);
}

fn iter_mut(&mut self) -> IterMut<K, V>

An iterator visiting all key-value pairs in arbitrary order, with mutable references to the values. Iterator element type is (&'a K, &'a mut V).

Example

fn main() { use std::collections::HashMap; let mut map = HashMap::new(); map.insert("a", 1i); map.insert("b", 2); map.insert("c", 3); // Update all values for (_, val) in map.iter_mut() { *val *= 2; } for (key, val) in map.iter() { println!("key: {} val: {}", key, val); } }
use std::collections::HashMap;

let mut map = HashMap::new();
map.insert("a", 1i);
map.insert("b", 2);
map.insert("c", 3);

// Update all values
for (_, val) in map.iter_mut() {
    *val *= 2;
}

for (key, val) in map.iter() {
    println!("key: {} val: {}", key, val);
}

fn into_iter(self) -> IntoIter<K, V>

Creates a consuming iterator, that is, one that moves each key-value pair out of the map in arbitrary order. The map cannot be used after calling this.

Example

fn main() { use std::collections::HashMap; let mut map = HashMap::new(); map.insert("a", 1i); map.insert("b", 2); map.insert("c", 3); // Not possible with .iter() let vec: Vec<(&str, int)> = map.into_iter().collect(); }
use std::collections::HashMap;

let mut map = HashMap::new();
map.insert("a", 1i);
map.insert("b", 2);
map.insert("c", 3);

// Not possible with .iter()
let vec: Vec<(&str, int)> = map.into_iter().collect();

fn entry<'a>(&'a mut self, key: K) -> Entry<'a, K, V>

Gets the given key's corresponding entry in the map for in-place manipulation

fn len(&self) -> uint

Return the number of elements in the map.

Example

fn main() { use std::collections::HashMap; let mut a = HashMap::new(); assert_eq!(a.len(), 0); a.insert(1u, "a"); assert_eq!(a.len(), 1); }
use std::collections::HashMap;

let mut a = HashMap::new();
assert_eq!(a.len(), 0);
a.insert(1u, "a");
assert_eq!(a.len(), 1);

fn is_empty(&self) -> bool

Return true if the map contains no elements.

Example

fn main() { use std::collections::HashMap; let mut a = HashMap::new(); assert!(a.is_empty()); a.insert(1u, "a"); assert!(!a.is_empty()); }
use std::collections::HashMap;

let mut a = HashMap::new();
assert!(a.is_empty());
a.insert(1u, "a");
assert!(!a.is_empty());

fn drain(&mut self) -> Drain<K, V>

Clears the map, returning all key-value pairs as an iterator. Keeps the allocated memory for reuse.

Example

fn main() { use std::collections::HashMap; let mut a = HashMap::new(); a.insert(1u, "a"); a.insert(2u, "b"); for (k, v) in a.drain().take(1) { assert!(k == 1 || k == 2); assert!(v == "a" || v == "b"); } assert!(a.is_empty()); }
use std::collections::HashMap;

let mut a = HashMap::new();
a.insert(1u, "a");
a.insert(2u, "b");

for (k, v) in a.drain().take(1) {
    assert!(k == 1 || k == 2);
    assert!(v == "a" || v == "b");
}

assert!(a.is_empty());

fn clear(&mut self)

Clears the map, removing all key-value pairs. Keeps the allocated memory for reuse.

Example

fn main() { use std::collections::HashMap; let mut a = HashMap::new(); a.insert(1u, "a"); a.clear(); assert!(a.is_empty()); }
use std::collections::HashMap;

let mut a = HashMap::new();
a.insert(1u, "a");
a.clear();
assert!(a.is_empty());

fn find(&self, k: &K) -> Option<&V>

Deprecated: Renamed to get.

fn get<Q: ?Sized>(&self, k: &Q) -> Option<&V> where Q: Hash<S> + Eq + BorrowFrom<K>

Returns a reference to the value corresponding to the key.

The key may be any borrowed form of the map's key type, but Hash and Eq on the borrowed form must match those for the key type.

Example

fn main() { use std::collections::HashMap; let mut map = HashMap::new(); map.insert(1u, "a"); assert_eq!(map.get(&1), Some(&"a")); assert_eq!(map.get(&2), None); }
use std::collections::HashMap;

let mut map = HashMap::new();
map.insert(1u, "a");
assert_eq!(map.get(&1), Some(&"a"));
assert_eq!(map.get(&2), None);

fn contains_key<Q: ?Sized>(&self, k: &Q) -> bool where Q: Hash<S> + Eq + BorrowFrom<K>

Returns true if the map contains a value for the specified key.

The key may be any borrowed form of the map's key type, but Hash and Eq on the borrowed form must match those for the key type.

Example

fn main() { use std::collections::HashMap; let mut map = HashMap::new(); map.insert(1u, "a"); assert_eq!(map.contains_key(&1), true); assert_eq!(map.contains_key(&2), false); }
use std::collections::HashMap;

let mut map = HashMap::new();
map.insert(1u, "a");
assert_eq!(map.contains_key(&1), true);
assert_eq!(map.contains_key(&2), false);

fn find_mut(&mut self, k: &K) -> Option<&mut V>

Deprecated: Renamed to get_mut.

fn get_mut<Q: ?Sized>(&mut self, k: &Q) -> Option<&mut V> where Q: Hash<S> + Eq + BorrowFrom<K>

Returns a mutable reference to the value corresponding to the key.

The key may be any borrowed form of the map's key type, but Hash and Eq on the borrowed form must match those for the key type.

Example

fn main() { use std::collections::HashMap; let mut map = HashMap::new(); map.insert(1u, "a"); match map.get_mut(&1) { Some(x) => *x = "b", None => (), } assert_eq!(map[1], "b"); }
use std::collections::HashMap;

let mut map = HashMap::new();
map.insert(1u, "a");
match map.get_mut(&1) {
    Some(x) => *x = "b",
    None => (),
}
assert_eq!(map[1], "b");

fn swap(&mut self, k: K, v: V) -> Option<V>

Deprecated: Renamed to insert.

fn insert(&mut self, k: K, v: V) -> Option<V>

Inserts a key-value pair from the map. If the key already had a value present in the map, that value is returned. Otherwise, None is returned.

Example

fn main() { use std::collections::HashMap; let mut map = HashMap::new(); assert_eq!(map.insert(37u, "a"), None); assert_eq!(map.is_empty(), false); map.insert(37, "b"); assert_eq!(map.insert(37, "c"), Some("b")); assert_eq!(map[37], "c"); }
use std::collections::HashMap;

let mut map = HashMap::new();
assert_eq!(map.insert(37u, "a"), None);
assert_eq!(map.is_empty(), false);

map.insert(37, "b");
assert_eq!(map.insert(37, "c"), Some("b"));
assert_eq!(map[37], "c");

fn pop(&mut self, k: &K) -> Option<V>

Deprecated: Renamed to remove.

fn remove<Q: ?Sized>(&mut self, k: &Q) -> Option<V> where Q: Hash<S> + Eq + BorrowFrom<K>

Removes a key from the map, returning the value at the key if the key was previously in the map.

The key may be any borrowed form of the map's key type, but Hash and Eq on the borrowed form must match those for the key type.

Example

fn main() { use std::collections::HashMap; let mut map = HashMap::new(); map.insert(1u, "a"); assert_eq!(map.remove(&1), Some("a")); assert_eq!(map.remove(&1), None); }
use std::collections::HashMap;

let mut map = HashMap::new();
map.insert(1u, "a");
assert_eq!(map.remove(&1), Some("a"));
assert_eq!(map.remove(&1), None);

impl<K: Eq + Hash<S>, V: Clone, S, H: Hasher<S>> HashMap<K, V, H>

fn find_copy(&self, k: &K) -> Option<V>

Deprecated: Use map.get(k).cloned().

Return a copy of the value corresponding to the key.

fn get_copy(&self, k: &K) -> V

Deprecated: Use map[k].clone().

Return a copy of the value corresponding to the key.

Trait Implementations

impl<K: Eq + Hash<S>, V: PartialEq, S, H: Hasher<S>> PartialEq for HashMap<K, V, H>

fn eq(&self, other: &HashMap<K, V, H>) -> bool

fn ne(&self, other: &Rhs) -> bool

impl<K: Eq + Hash<S>, V: Eq, S, H: Hasher<S>> Eq for HashMap<K, V, H>

impl<K: Eq + Hash<S> + Show, V: Show, S, H: Hasher<S>> Show for HashMap<K, V, H>

fn fmt(&self, f: &mut Formatter) -> Result

impl<K: Eq + Hash<S>, V, S, H: Hasher<S> + Default> Default for HashMap<K, V, H>

fn default() -> HashMap<K, V, H>

impl<K: Hash<S> + Eq, Q: ?Sized, V, S, H: Hasher<S>> Index<Q, V> for HashMap<K, V, H> where Q: BorrowFrom<K> + Hash<S> + Eq

fn index<'a>(&'a self, index: &Q) -> &'a V

impl<K: Hash<S> + Eq, Q: ?Sized, V, S, H: Hasher<S>> IndexMut<Q, V> for HashMap<K, V, H> where Q: BorrowFrom<K> + Hash<S> + Eq

fn index_mut<'a>(&'a mut self, index: &Q) -> &'a mut V

impl<K: Eq + Hash<S>, V, S, H: Hasher<S> + Default> FromIterator<(K, V)> for HashMap<K, V, H>

fn from_iter<T: Iterator<(K, V)>>(iter: T) -> HashMap<K, V, H>

impl<K: Eq + Hash<S>, V, S, H: Hasher<S> + Default> Extend<(K, V)> for HashMap<K, V, H>

fn extend<T: Iterator<(K, V)>>(&mut self, iter: T)

impl<K: Eq + Hash<S>, V: PartialEq, S, H: Hasher<S>> PartialEq for HashMap<K, V, H>

fn eq(&self, other: &HashMap<K, V, H>) -> bool

fn ne(&self, other: &Rhs) -> bool

impl<K: Eq + Hash<S>, V: Eq, S, H: Hasher<S>> Eq for HashMap<K, V, H>

impl<K: Eq + Hash<S> + Show, V: Show, S, H: Hasher<S>> Show for HashMap<K, V, H>

fn fmt(&self, f: &mut Formatter) -> Result

impl<K: Eq + Hash<S>, V, S, H: Hasher<S> + Default> Default for HashMap<K, V, H>

fn default() -> HashMap<K, V, H>

impl<K: Hash<S> + Eq, Q: ?Sized, V, S, H: Hasher<S>> Index<Q, V> for HashMap<K, V, H> where Q: BorrowFrom<K> + Hash<S> + Eq

fn index<'a>(&'a self, index: &Q) -> &'a V

impl<K: Hash<S> + Eq, Q: ?Sized, V, S, H: Hasher<S>> IndexMut<Q, V> for HashMap<K, V, H> where Q: BorrowFrom<K> + Hash<S> + Eq

fn index_mut<'a>(&'a mut self, index: &Q) -> &'a mut V

impl<K: Eq + Hash<S>, V, S, H: Hasher<S> + Default> FromIterator<(K, V)> for HashMap<K, V, H>

fn from_iter<T: Iterator<(K, V)>>(iter: T) -> HashMap<K, V, H>

impl<K: Eq + Hash<S>, V, S, H: Hasher<S> + Default> Extend<(K, V)> for HashMap<K, V, H>

fn extend<T: Iterator<(K, V)>>(&mut self, iter: T)

Derived Implementations

impl<K: Clone, V: Clone, H: Clone> Clone for HashMap<K, V, H>

fn clone(&self) -> HashMap<K, V, H>

fn clone_from(&mut self, source: &Self)

impl<K: Clone, V: Clone, H: Clone> Clone for HashMap<K, V, H>

fn clone(&self) -> HashMap<K, V, H>

fn clone_from(&mut self, source: &Self)