1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
use byteorder::{ReadBytesExt, WriteBytesExt, LittleEndian, BigEndian};
use std::collections::{btree_map, BTreeMap, VecDeque};
use std::{ptr, io};

use rustc::ty::Instance;
use rustc::ty::maps::TyCtxtAt;
use rustc::ty::layout::{self, Align, TargetDataLayout};
use syntax::ast::Mutability;

use rustc_data_structures::fx::{FxHashSet, FxHashMap};
use rustc::mir::interpret::{MemoryPointer, AllocId, Allocation, AccessKind, UndefMask, Value, Pointer,
                            EvalResult, PrimVal, EvalErrorKind};

use super::{EvalContext, Machine};

////////////////////////////////////////////////////////////////////////////////
// Allocations and pointers
////////////////////////////////////////////////////////////////////////////////

#[derive(Debug, PartialEq, Copy, Clone)]
pub enum MemoryKind<T> {
    /// Error if deallocated except during a stack pop
    Stack,
    /// Additional memory kinds a machine wishes to distinguish from the builtin ones
    Machine(T),
}

////////////////////////////////////////////////////////////////////////////////
// Top-level interpreter memory
////////////////////////////////////////////////////////////////////////////////

pub struct Memory<'a, 'mir, 'tcx: 'a + 'mir, M: Machine<'mir, 'tcx>> {
    /// Additional data required by the Machine
    pub data: M::MemoryData,

    /// Helps guarantee that stack allocations aren't deallocated via `rust_deallocate`
    alloc_kind: FxHashMap<AllocId, MemoryKind<M::MemoryKinds>>,

    /// Actual memory allocations (arbitrary bytes, may contain pointers into other allocations).
    alloc_map: FxHashMap<AllocId, Allocation>,

    /// Actual memory allocations (arbitrary bytes, may contain pointers into other allocations).
    ///
    /// Stores statics while they are being processed, before they are interned and thus frozen
    uninitialized_statics: FxHashMap<AllocId, Allocation>,

    /// The current stack frame.  Used to check accesses against locks.
    pub cur_frame: usize,

    pub tcx: TyCtxtAt<'a, 'tcx, 'tcx>,
}

impl<'a, 'mir, 'tcx, M: Machine<'mir, 'tcx>> Memory<'a, 'mir, 'tcx, M> {
    pub fn new(tcx: TyCtxtAt<'a, 'tcx, 'tcx>, data: M::MemoryData) -> Self {
        Memory {
            data,
            alloc_kind: FxHashMap::default(),
            alloc_map: FxHashMap::default(),
            uninitialized_statics: FxHashMap::default(),
            tcx,
            cur_frame: usize::max_value(),
        }
    }

    pub fn allocations<'x>(
        &'x self,
    ) -> impl Iterator<Item = (AllocId, &'x Allocation)> {
        self.alloc_map.iter().map(|(&id, alloc)| (id, alloc))
    }

    pub fn create_fn_alloc(&mut self, instance: Instance<'tcx>) -> MemoryPointer {
        let id = self.tcx.interpret_interner.create_fn_alloc(instance);
        MemoryPointer::new(id, 0)
    }

    pub fn allocate_cached(&mut self, bytes: &[u8]) -> MemoryPointer {
        let id = self.tcx.allocate_cached(bytes);
        MemoryPointer::new(id, 0)
    }

    /// kind is `None` for statics
    pub fn allocate(
        &mut self,
        size: u64,
        align: Align,
        kind: Option<MemoryKind<M::MemoryKinds>>,
    ) -> EvalResult<'tcx, MemoryPointer> {
        assert_eq!(size as usize as u64, size);
        let alloc = Allocation {
            bytes: vec![0; size as usize],
            relocations: BTreeMap::new(),
            undef_mask: UndefMask::new(size),
            align,
            runtime_mutability: Mutability::Immutable,
        };
        let id = self.tcx.interpret_interner.reserve();
        M::add_lock(self, id);
        match kind {
            Some(kind @ MemoryKind::Stack) |
            Some(kind @ MemoryKind::Machine(_)) => {
                self.alloc_map.insert(id, alloc);
                self.alloc_kind.insert(id, kind);
            },
            None => {
                self.uninitialized_statics.insert(id, alloc);
            },
        }
        Ok(MemoryPointer::new(id, 0))
    }

    pub fn reallocate(
        &mut self,
        ptr: MemoryPointer,
        old_size: u64,
        old_align: Align,
        new_size: u64,
        new_align: Align,
        kind: MemoryKind<M::MemoryKinds>,
    ) -> EvalResult<'tcx, MemoryPointer> {
        if ptr.offset != 0 {
            return err!(ReallocateNonBasePtr);
        }
        if self.alloc_map.contains_key(&ptr.alloc_id) {
            let alloc_kind = self.alloc_kind[&ptr.alloc_id];
            if alloc_kind != kind {
                return err!(ReallocatedWrongMemoryKind(
                    format!("{:?}", alloc_kind),
                    format!("{:?}", kind),
                ));
            }
        }

        // For simplicities' sake, we implement reallocate as "alloc, copy, dealloc"
        let new_ptr = self.allocate(new_size, new_align, Some(kind))?;
        self.copy(
            ptr.into(),
            old_align,
            new_ptr.into(),
            new_align,
            old_size.min(new_size),
            /*nonoverlapping*/
            true,
        )?;
        self.deallocate(ptr, Some((old_size, old_align)), kind)?;

        Ok(new_ptr)
    }

    pub fn deallocate_local(&mut self, ptr: MemoryPointer) -> EvalResult<'tcx> {
        match self.alloc_kind.get(&ptr.alloc_id).cloned() {
            Some(MemoryKind::Stack) => self.deallocate(ptr, None, MemoryKind::Stack),
            // Happens if the memory was interned into immutable memory
            None => Ok(()),
            other => bug!("local contained non-stack memory: {:?}", other),
        }
    }

    pub fn deallocate(
        &mut self,
        ptr: MemoryPointer,
        size_and_align: Option<(u64, Align)>,
        kind: MemoryKind<M::MemoryKinds>,
    ) -> EvalResult<'tcx> {
        if ptr.offset != 0 {
            return err!(DeallocateNonBasePtr);
        }

        let alloc = match self.alloc_map.remove(&ptr.alloc_id) {
            Some(alloc) => alloc,
            None => if self.uninitialized_statics.contains_key(&ptr.alloc_id) {
                return err!(DeallocatedWrongMemoryKind(
                    "uninitializedstatic".to_string(),
                    format!("{:?}", kind),
                ))
            } else if self.tcx.interpret_interner.get_fn(ptr.alloc_id).is_some() {
                return err!(DeallocatedWrongMemoryKind(
                    "function".to_string(),
                    format!("{:?}", kind),
                ))
            } else if self.tcx.interpret_interner.get_alloc(ptr.alloc_id).is_some() {
                return err!(DeallocatedWrongMemoryKind(
                    "static".to_string(),
                    format!("{:?}", kind),
                ))
            } else {
                return err!(DoubleFree)
            },
        };

        let alloc_kind = self.alloc_kind.remove(&ptr.alloc_id).expect("alloc_map out of sync with alloc_kind");

        // It is okay for us to still holds locks on deallocation -- for example, we could store data we own
        // in a local, and the local could be deallocated (from StorageDead) before the function returns.
        // However, we should check *something*.  For now, we make sure that there is no conflicting write
        // lock by another frame.  We *have* to permit deallocation if we hold a read lock.
        // TODO: Figure out the exact rules here.
        M::free_lock(self, ptr.alloc_id, alloc.bytes.len() as u64)?;

        if alloc_kind != kind {
            return err!(DeallocatedWrongMemoryKind(
                format!("{:?}", alloc_kind),
                format!("{:?}", kind),
            ));
        }
        if let Some((size, align)) = size_and_align {
            if size != alloc.bytes.len() as u64 || align != alloc.align {
                return err!(IncorrectAllocationInformation(size, alloc.bytes.len(), align.abi(), alloc.align.abi()));
            }
        }

        debug!("deallocated : {}", ptr.alloc_id);

        Ok(())
    }

    pub fn pointer_size(&self) -> u64 {
        self.tcx.data_layout.pointer_size.bytes()
    }

    pub fn endianness(&self) -> layout::Endian {
        self.tcx.data_layout.endian
    }

    /// Check that the pointer is aligned AND non-NULL.
    pub fn check_align(&self, ptr: Pointer, required_align: Align) -> EvalResult<'tcx> {
        // Check non-NULL/Undef, extract offset
        let (offset, alloc_align) = match ptr.into_inner_primval() {
            PrimVal::Ptr(ptr) => {
                let alloc = self.get(ptr.alloc_id)?;
                (ptr.offset, alloc.align)
            }
            PrimVal::Bytes(bytes) => {
                let v = ((bytes as u128) % (1 << self.pointer_size())) as u64;
                if v == 0 {
                    return err!(InvalidNullPointerUsage);
                }
                // the base address if the "integer allocation" is 0 and hence always aligned
                (v, required_align)
            }
            PrimVal::Undef => return err!(ReadUndefBytes),
        };
        // Check alignment
        if alloc_align.abi() < required_align.abi() {
            return err!(AlignmentCheckFailed {
                has: alloc_align.abi(),
                required: required_align.abi(),
            });
        }
        if offset % required_align.abi() == 0 {
            Ok(())
        } else {
            err!(AlignmentCheckFailed {
                has: offset % required_align.abi(),
                required: required_align.abi(),
            })
        }
    }

    pub fn check_bounds(&self, ptr: MemoryPointer, access: bool) -> EvalResult<'tcx> {
        let alloc = self.get(ptr.alloc_id)?;
        let allocation_size = alloc.bytes.len() as u64;
        if ptr.offset > allocation_size {
            return err!(PointerOutOfBounds {
                ptr,
                access,
                allocation_size,
            });
        }
        Ok(())
    }
}

/// Allocation accessors
impl<'a, 'mir, 'tcx, M: Machine<'mir, 'tcx>> Memory<'a, 'mir, 'tcx, M> {
    pub fn get(&self, id: AllocId) -> EvalResult<'tcx, &Allocation> {
        // normal alloc?
        match self.alloc_map.get(&id) {
                    Some(alloc) => Ok(alloc),
            // uninitialized static alloc?
            None => match self.uninitialized_statics.get(&id) {
                Some(alloc) => Ok(alloc),
                None => {
                    // static alloc?
                    self.tcx.interpret_interner.get_alloc(id)
                        // no alloc? produce an error
                        .ok_or_else(|| if self.tcx.interpret_interner.get_fn(id).is_some() {
                            EvalErrorKind::DerefFunctionPointer.into()
                        } else {
                            EvalErrorKind::DanglingPointerDeref.into()
                        })
                },
            },
        }
    }

    fn get_mut(
        &mut self,
        id: AllocId,
    ) -> EvalResult<'tcx, &mut Allocation> {
        // normal alloc?
        match self.alloc_map.get_mut(&id) {
            Some(alloc) => Ok(alloc),
            // uninitialized static alloc?
            None => match self.uninitialized_statics.get_mut(&id) {
                Some(alloc) => Ok(alloc),
                None => {
                    // no alloc or immutable alloc? produce an error
                    if self.tcx.interpret_interner.get_alloc(id).is_some() {
                        err!(ModifiedConstantMemory)
                    } else if self.tcx.interpret_interner.get_fn(id).is_some() {
                        err!(DerefFunctionPointer)
                    } else {
                        err!(DanglingPointerDeref)
                    }
                },
            },
        }
    }

    pub fn get_fn(&self, ptr: MemoryPointer) -> EvalResult<'tcx, Instance<'tcx>> {
        if ptr.offset != 0 {
            return err!(InvalidFunctionPointer);
        }
        debug!("reading fn ptr: {}", ptr.alloc_id);
        self.tcx
            .interpret_interner
            .get_fn(ptr.alloc_id)
            .ok_or(EvalErrorKind::ExecuteMemory.into())
    }

    /// For debugging, print an allocation and all allocations it points to, recursively.
    pub fn dump_alloc(&self, id: AllocId) {
        self.dump_allocs(vec![id]);
    }

    /// For debugging, print a list of allocations and all allocations they point to, recursively.
    pub fn dump_allocs(&self, mut allocs: Vec<AllocId>) {
        use std::fmt::Write;
        allocs.sort();
        allocs.dedup();
        let mut allocs_to_print = VecDeque::from(allocs);
        let mut allocs_seen = FxHashSet::default();

        while let Some(id) = allocs_to_print.pop_front() {
            let mut msg = format!("Alloc {:<5} ", format!("{}:", id));
            let prefix_len = msg.len();
            let mut relocations = vec![];

            let (alloc, immutable) =
                // normal alloc?
                match self.alloc_map.get(&id) {
                    Some(a) => (a, match self.alloc_kind[&id] {
                        MemoryKind::Stack => " (stack)".to_owned(),
                        MemoryKind::Machine(m) => format!(" ({:?})", m),
                    }),
                    // uninitialized static alloc?
                    None => match self.uninitialized_statics.get(&id) {
                        Some(a) => (a, " (static in the process of initialization)".to_owned()),
                        None => {
                            // static alloc?
                            match self.tcx.interpret_interner.get_alloc(id) {
                                Some(a) => (a, "(immutable)".to_owned()),
                                None => if let Some(func) = self.tcx.interpret_interner.get_fn(id) {
                                    trace!("{} {}", msg, func);
                                    continue;
                                } else {
                                    trace!("{} (deallocated)", msg);
                                    continue;
                                },
                            }
                        },
                    },
                };

            for i in 0..(alloc.bytes.len() as u64) {
                if let Some(&target_id) = alloc.relocations.get(&i) {
                    if allocs_seen.insert(target_id) {
                        allocs_to_print.push_back(target_id);
                    }
                    relocations.push((i, target_id));
                }
                if alloc.undef_mask.is_range_defined(i, i + 1) {
                    // this `as usize` is fine, since `i` came from a `usize`
                    write!(msg, "{:02x} ", alloc.bytes[i as usize]).unwrap();
                } else {
                    msg.push_str("__ ");
                }
            }

            trace!(
                "{}({} bytes, alignment {}){}",
                msg,
                alloc.bytes.len(),
                alloc.align.abi(),
                immutable
            );

            if !relocations.is_empty() {
                msg.clear();
                write!(msg, "{:1$}", "", prefix_len).unwrap(); // Print spaces.
                let mut pos = 0;
                let relocation_width = (self.pointer_size() - 1) * 3;
                for (i, target_id) in relocations {
                    // this `as usize` is fine, since we can't print more chars than `usize::MAX`
                    write!(msg, "{:1$}", "", ((i - pos) * 3) as usize).unwrap();
                    let target = format!("({})", target_id);
                    // this `as usize` is fine, since we can't print more chars than `usize::MAX`
                    write!(msg, "└{0:─^1$}┘ ", target, relocation_width as usize).unwrap();
                    pos = i + self.pointer_size();
                }
                trace!("{}", msg);
            }
        }
    }

    pub fn leak_report(&self) -> usize {
        trace!("### LEAK REPORT ###");
        let leaks: Vec<_> = self.alloc_map
            .keys()
            .cloned()
            .collect();
        let n = leaks.len();
        self.dump_allocs(leaks);
        n
    }
}

/// Byte accessors
impl<'a, 'mir, 'tcx, M: Machine<'mir, 'tcx>> Memory<'a, 'mir, 'tcx, M> {
    fn get_bytes_unchecked(
        &self,
        ptr: MemoryPointer,
        size: u64,
        align: Align,
    ) -> EvalResult<'tcx, &[u8]> {
        // Zero-sized accesses can use dangling pointers, but they still have to be aligned and non-NULL
        self.check_align(ptr.into(), align)?;
        if size == 0 {
            return Ok(&[]);
        }
        M::check_locks(self, ptr, size, AccessKind::Read)?;
        self.check_bounds(ptr.offset(size, self)?, true)?; // if ptr.offset is in bounds, then so is ptr (because offset checks for overflow)
        let alloc = self.get(ptr.alloc_id)?;
        assert_eq!(ptr.offset as usize as u64, ptr.offset);
        assert_eq!(size as usize as u64, size);
        let offset = ptr.offset as usize;
        Ok(&alloc.bytes[offset..offset + size as usize])
    }

    fn get_bytes_unchecked_mut(
        &mut self,
        ptr: MemoryPointer,
        size: u64,
        align: Align,
    ) -> EvalResult<'tcx, &mut [u8]> {
        // Zero-sized accesses can use dangling pointers, but they still have to be aligned and non-NULL
        self.check_align(ptr.into(), align)?;
        if size == 0 {
            return Ok(&mut []);
        }
        M::check_locks(self, ptr, size, AccessKind::Write)?;
        self.check_bounds(ptr.offset(size, &*self)?, true)?; // if ptr.offset is in bounds, then so is ptr (because offset checks for overflow)
        let alloc = self.get_mut(ptr.alloc_id)?;
        assert_eq!(ptr.offset as usize as u64, ptr.offset);
        assert_eq!(size as usize as u64, size);
        let offset = ptr.offset as usize;
        Ok(&mut alloc.bytes[offset..offset + size as usize])
    }

    fn get_bytes(&self, ptr: MemoryPointer, size: u64, align: Align) -> EvalResult<'tcx, &[u8]> {
        assert_ne!(size, 0);
        if self.relocations(ptr, size)?.count() != 0 {
            return err!(ReadPointerAsBytes);
        }
        self.check_defined(ptr, size)?;
        self.get_bytes_unchecked(ptr, size, align)
    }

    fn get_bytes_mut(
        &mut self,
        ptr: MemoryPointer,
        size: u64,
        align: Align,
    ) -> EvalResult<'tcx, &mut [u8]> {
        assert_ne!(size, 0);
        self.clear_relocations(ptr, size)?;
        self.mark_definedness(ptr.into(), size, true)?;
        self.get_bytes_unchecked_mut(ptr, size, align)
    }
}

/// Reading and writing
impl<'a, 'mir, 'tcx, M: Machine<'mir, 'tcx>> Memory<'a, 'mir, 'tcx, M> {
    /// mark an allocation pointed to by a static as static and initialized
    fn mark_inner_allocation_initialized(
        &mut self,
        alloc: AllocId,
        mutability: Mutability,
    ) -> EvalResult<'tcx> {
        match self.alloc_kind.get(&alloc) {
            // do not go into statics
            None => Ok(()),
            // just locals and machine allocs
            Some(_) => self.mark_static_initialized(alloc, mutability),
        }
    }

    /// mark an allocation as static and initialized, either mutable or not
    pub fn mark_static_initialized(
        &mut self,
        alloc_id: AllocId,
        mutability: Mutability,
    ) -> EvalResult<'tcx> {
        trace!(
            "mark_static_initialized {:?}, mutability: {:?}",
            alloc_id,
            mutability
        );
        // The machine handled it
        if M::mark_static_initialized(self, alloc_id, mutability)? {
            return Ok(())
        }
        let alloc = self.alloc_map.remove(&alloc_id);
        match self.alloc_kind.remove(&alloc_id) {
            None => {},
            Some(MemoryKind::Machine(_)) => bug!("machine didn't handle machine alloc"),
            Some(MemoryKind::Stack) => {},
        }
        let uninit = self.uninitialized_statics.remove(&alloc_id);
        if let Some(mut alloc) = alloc.or(uninit) {
            // ensure llvm knows not to put this into immutable memroy
            alloc.runtime_mutability = mutability;
            let alloc = self.tcx.intern_const_alloc(alloc);
            self.tcx.interpret_interner.intern_at_reserved(alloc_id, alloc);
            // recurse into inner allocations
            for &alloc in alloc.relocations.values() {
                self.mark_inner_allocation_initialized(alloc, mutability)?;
            }
        } else {
            bug!("no allocation found for {:?}", alloc_id);
        }
        Ok(())
    }

    pub fn copy(
        &mut self,
        src: Pointer,
        src_align: Align,
        dest: Pointer,
        dest_align: Align,
        size: u64,
        nonoverlapping: bool,
    ) -> EvalResult<'tcx> {
        // Empty accesses don't need to be valid pointers, but they should still be aligned
        self.check_align(src, src_align)?;
        self.check_align(dest, dest_align)?;
        if size == 0 {
            return Ok(());
        }
        let src = src.to_ptr()?;
        let dest = dest.to_ptr()?;
        self.check_relocation_edges(src, size)?;

        // first copy the relocations to a temporary buffer, because
        // `get_bytes_mut` will clear the relocations, which is correct,
        // since we don't want to keep any relocations at the target.

        let relocations: Vec<_> = self.relocations(src, size)?
            .map(|(&offset, &alloc_id)| {
                // Update relocation offsets for the new positions in the destination allocation.
                (offset + dest.offset - src.offset, alloc_id)
            })
            .collect();

        let src_bytes = self.get_bytes_unchecked(src, size, src_align)?.as_ptr();
        let dest_bytes = self.get_bytes_mut(dest, size, dest_align)?.as_mut_ptr();

        // SAFE: The above indexing would have panicked if there weren't at least `size` bytes
        // behind `src` and `dest`. Also, we use the overlapping-safe `ptr::copy` if `src` and
        // `dest` could possibly overlap.
        unsafe {
            assert_eq!(size as usize as u64, size);
            if src.alloc_id == dest.alloc_id {
                if nonoverlapping {
                    if (src.offset <= dest.offset && src.offset + size > dest.offset) ||
                        (dest.offset <= src.offset && dest.offset + size > src.offset)
                    {
                        return err!(Intrinsic(
                            format!("copy_nonoverlapping called on overlapping ranges"),
                        ));
                    }
                }
                ptr::copy(src_bytes, dest_bytes, size as usize);
            } else {
                ptr::copy_nonoverlapping(src_bytes, dest_bytes, size as usize);
            }
        }

        self.copy_undef_mask(src, dest, size)?;
        // copy back the relocations
        self.get_mut(dest.alloc_id)?.relocations.extend(relocations);

        Ok(())
    }

    pub fn read_c_str(&self, ptr: MemoryPointer) -> EvalResult<'tcx, &[u8]> {
        let alloc = self.get(ptr.alloc_id)?;
        assert_eq!(ptr.offset as usize as u64, ptr.offset);
        let offset = ptr.offset as usize;
        match alloc.bytes[offset..].iter().position(|&c| c == 0) {
            Some(size) => {
                if self.relocations(ptr, (size + 1) as u64)?.count() != 0 {
                    return err!(ReadPointerAsBytes);
                }
                self.check_defined(ptr, (size + 1) as u64)?;
                M::check_locks(self, ptr, (size + 1) as u64, AccessKind::Read)?;
                Ok(&alloc.bytes[offset..offset + size])
            }
            None => err!(UnterminatedCString(ptr)),
        }
    }

    pub fn read_bytes(&self, ptr: Pointer, size: u64) -> EvalResult<'tcx, &[u8]> {
        // Empty accesses don't need to be valid pointers, but they should still be non-NULL
        let align = Align::from_bytes(1, 1).unwrap();
        self.check_align(ptr, align)?;
        if size == 0 {
            return Ok(&[]);
        }
        self.get_bytes(ptr.to_ptr()?, size, align)
    }

    pub fn write_bytes(&mut self, ptr: Pointer, src: &[u8]) -> EvalResult<'tcx> {
        // Empty accesses don't need to be valid pointers, but they should still be non-NULL
        let align = Align::from_bytes(1, 1).unwrap();
        self.check_align(ptr, align)?;
        if src.is_empty() {
            return Ok(());
        }
        let bytes = self.get_bytes_mut(ptr.to_ptr()?, src.len() as u64, align)?;
        bytes.clone_from_slice(src);
        Ok(())
    }

    pub fn write_repeat(&mut self, ptr: Pointer, val: u8, count: u64) -> EvalResult<'tcx> {
        // Empty accesses don't need to be valid pointers, but they should still be non-NULL
        let align = Align::from_bytes(1, 1).unwrap();
        self.check_align(ptr, align)?;
        if count == 0 {
            return Ok(());
        }
        let bytes = self.get_bytes_mut(ptr.to_ptr()?, count, align)?;
        for b in bytes {
            *b = val;
        }
        Ok(())
    }

    pub fn read_primval(&self, ptr: MemoryPointer, ptr_align: Align, size: u64) -> EvalResult<'tcx, PrimVal> {
        self.check_relocation_edges(ptr, size)?; // Make sure we don't read part of a pointer as a pointer
        let endianness = self.endianness();
        let bytes = self.get_bytes_unchecked(ptr, size, ptr_align.min(self.int_align(size)))?;
        // Undef check happens *after* we established that the alignment is correct.
        // We must not return Ok() for unaligned pointers!
        if self.check_defined(ptr, size).is_err() {
            return Ok(PrimVal::Undef.into());
        }
        // Now we do the actual reading
        let bytes = read_target_uint(endianness, bytes).unwrap();
        // See if we got a pointer
        if size != self.pointer_size() {
            if self.relocations(ptr, size)?.count() != 0 {
                return err!(ReadPointerAsBytes);
            }
        } else {
            let alloc = self.get(ptr.alloc_id)?;
            match alloc.relocations.get(&ptr.offset) {
                Some(&alloc_id) => return Ok(PrimVal::Ptr(MemoryPointer::new(alloc_id, bytes as u64))),
                None => {},
            }
        }
        // We don't. Just return the bytes.
        Ok(PrimVal::Bytes(bytes))
    }

    pub fn read_ptr_sized(&self, ptr: MemoryPointer, ptr_align: Align) -> EvalResult<'tcx, PrimVal> {
        self.read_primval(ptr, ptr_align, self.pointer_size())
    }

    pub fn write_primval(&mut self, ptr: MemoryPointer, ptr_align: Align, val: PrimVal, size: u64, signed: bool) -> EvalResult<'tcx> {
        let endianness = self.endianness();

        let bytes = match val {
            PrimVal::Ptr(val) => {
                assert_eq!(size, self.pointer_size());
                val.offset as u128
            }

            PrimVal::Bytes(bytes) => bytes,

            PrimVal::Undef => {
                self.mark_definedness(PrimVal::Ptr(ptr).into(), size, false)?;
                return Ok(());
            }
        };

        {
            let align = self.int_align(size);
            let dst = self.get_bytes_mut(ptr, size, ptr_align.min(align))?;
            if signed {
                write_target_int(endianness, dst, bytes as i128).unwrap();
            } else {
                write_target_uint(endianness, dst, bytes).unwrap();
            }
        }

        // See if we have to also write a relocation
        match val {
            PrimVal::Ptr(val) => {
                self.get_mut(ptr.alloc_id)?.relocations.insert(
                    ptr.offset,
                    val.alloc_id,
                );
            }
            _ => {}
        }

        Ok(())
    }

    pub fn write_ptr_sized_unsigned(&mut self, ptr: MemoryPointer, ptr_align: Align, val: PrimVal) -> EvalResult<'tcx> {
        let ptr_size = self.pointer_size();
        self.write_primval(ptr, ptr_align, val, ptr_size, false)
    }

    fn int_align(&self, size: u64) -> Align {
        // We assume pointer-sized integers have the same alignment as pointers.
        // We also assume signed and unsigned integers of the same size have the same alignment.
        let ity = match size {
            1 => layout::I8,
            2 => layout::I16,
            4 => layout::I32,
            8 => layout::I64,
            16 => layout::I128,
            _ => bug!("bad integer size: {}", size),
        };
        ity.align(self)
    }
}

/// Relocations
impl<'a, 'mir, 'tcx, M: Machine<'mir, 'tcx>> Memory<'a, 'mir, 'tcx, M> {
    fn relocations(
        &self,
        ptr: MemoryPointer,
        size: u64,
    ) -> EvalResult<'tcx, btree_map::Range<u64, AllocId>> {
        let start = ptr.offset.saturating_sub(self.pointer_size() - 1);
        let end = ptr.offset + size;
        Ok(self.get(ptr.alloc_id)?.relocations.range(start..end))
    }

    fn clear_relocations(&mut self, ptr: MemoryPointer, size: u64) -> EvalResult<'tcx> {
        // Find all relocations overlapping the given range.
        let keys: Vec<_> = self.relocations(ptr, size)?.map(|(&k, _)| k).collect();
        if keys.is_empty() {
            return Ok(());
        }

        // Find the start and end of the given range and its outermost relocations.
        let start = ptr.offset;
        let end = start + size;
        let first = *keys.first().unwrap();
        let last = *keys.last().unwrap() + self.pointer_size();

        let alloc = self.get_mut(ptr.alloc_id)?;

        // Mark parts of the outermost relocations as undefined if they partially fall outside the
        // given range.
        if first < start {
            alloc.undef_mask.set_range(first, start, false);
        }
        if last > end {
            alloc.undef_mask.set_range(end, last, false);
        }

        // Forget all the relocations.
        for k in keys {
            alloc.relocations.remove(&k);
        }

        Ok(())
    }

    fn check_relocation_edges(&self, ptr: MemoryPointer, size: u64) -> EvalResult<'tcx> {
        let overlapping_start = self.relocations(ptr, 0)?.count();
        let overlapping_end = self.relocations(ptr.offset(size, self)?, 0)?.count();
        if overlapping_start + overlapping_end != 0 {
            return err!(ReadPointerAsBytes);
        }
        Ok(())
    }
}

/// Undefined bytes
impl<'a, 'mir, 'tcx, M: Machine<'mir, 'tcx>> Memory<'a, 'mir, 'tcx, M> {
    // FIXME(solson): This is a very naive, slow version.
    fn copy_undef_mask(
        &mut self,
        src: MemoryPointer,
        dest: MemoryPointer,
        size: u64,
    ) -> EvalResult<'tcx> {
        // The bits have to be saved locally before writing to dest in case src and dest overlap.
        assert_eq!(size as usize as u64, size);
        let mut v = Vec::with_capacity(size as usize);
        for i in 0..size {
            let defined = self.get(src.alloc_id)?.undef_mask.get(src.offset + i);
            v.push(defined);
        }
        for (i, defined) in v.into_iter().enumerate() {
            self.get_mut(dest.alloc_id)?.undef_mask.set(
                dest.offset +
                    i as u64,
                defined,
            );
        }
        Ok(())
    }

    fn check_defined(&self, ptr: MemoryPointer, size: u64) -> EvalResult<'tcx> {
        let alloc = self.get(ptr.alloc_id)?;
        if !alloc.undef_mask.is_range_defined(
            ptr.offset,
            ptr.offset + size,
        )
        {
            return err!(ReadUndefBytes);
        }
        Ok(())
    }

    pub fn mark_definedness(
        &mut self,
        ptr: Pointer,
        size: u64,
        new_state: bool,
    ) -> EvalResult<'tcx> {
        if size == 0 {
            return Ok(());
        }
        let ptr = ptr.to_ptr()?;
        let alloc = self.get_mut(ptr.alloc_id)?;
        alloc.undef_mask.set_range(
            ptr.offset,
            ptr.offset + size,
            new_state,
        );
        Ok(())
    }
}

////////////////////////////////////////////////////////////////////////////////
// Methods to access integers in the target endianness
////////////////////////////////////////////////////////////////////////////////

pub fn write_target_uint(
    endianness: layout::Endian,
    mut target: &mut [u8],
    data: u128,
) -> Result<(), io::Error> {
    let len = target.len();
    match endianness {
        layout::Endian::Little => target.write_uint128::<LittleEndian>(data, len),
        layout::Endian::Big => target.write_uint128::<BigEndian>(data, len),
    }
}

pub fn write_target_int(
    endianness: layout::Endian,
    mut target: &mut [u8],
    data: i128,
) -> Result<(), io::Error> {
    let len = target.len();
    match endianness {
        layout::Endian::Little => target.write_int128::<LittleEndian>(data, len),
        layout::Endian::Big => target.write_int128::<BigEndian>(data, len),
    }
}

pub fn read_target_uint(endianness: layout::Endian, mut source: &[u8]) -> Result<u128, io::Error> {
    match endianness {
        layout::Endian::Little => source.read_uint128::<LittleEndian>(source.len()),
        layout::Endian::Big => source.read_uint128::<BigEndian>(source.len()),
    }
}

////////////////////////////////////////////////////////////////////////////////
// Unaligned accesses
////////////////////////////////////////////////////////////////////////////////

pub trait HasMemory<'a, 'mir, 'tcx: 'a + 'mir, M: Machine<'mir, 'tcx>> {
    fn memory_mut(&mut self) -> &mut Memory<'a, 'mir, 'tcx, M>;
    fn memory(&self) -> &Memory<'a, 'mir, 'tcx, M>;

    /// Convert the value into a pointer (or a pointer-sized integer).  If the value is a ByRef,
    /// this may have to perform a load.
    fn into_ptr(
        &self,
        value: Value,
    ) -> EvalResult<'tcx, Pointer> {
        Ok(match value {
            Value::ByRef(ptr, align) => {
                self.memory().read_ptr_sized(ptr.to_ptr()?, align)?
            }
            Value::ByVal(ptr) |
            Value::ByValPair(ptr, _) => ptr,
        }.into())
    }

    fn into_ptr_vtable_pair(
        &self,
        value: Value,
    ) -> EvalResult<'tcx, (Pointer, MemoryPointer)> {
        match value {
            Value::ByRef(ref_ptr, align) => {
                let mem = self.memory();
                let ptr = mem.read_ptr_sized(ref_ptr.to_ptr()?, align)?.into();
                let vtable = mem.read_ptr_sized(
                    ref_ptr.offset(mem.pointer_size(), &mem.tcx.data_layout)?.to_ptr()?,
                    align
                )?.to_ptr()?;
                Ok((ptr, vtable))
            }

            Value::ByValPair(ptr, vtable) => Ok((ptr.into(), vtable.to_ptr()?)),

            Value::ByVal(PrimVal::Undef) => err!(ReadUndefBytes),
            _ => bug!("expected ptr and vtable, got {:?}", value),
        }
    }

    fn into_slice(
        &self,
        value: Value,
    ) -> EvalResult<'tcx, (Pointer, u64)> {
        match value {
            Value::ByRef(ref_ptr, align) => {
                let mem = self.memory();
                let ptr = mem.read_ptr_sized(ref_ptr.to_ptr()?, align)?.into();
                let len = mem.read_ptr_sized(
                    ref_ptr.offset(mem.pointer_size(), &mem.tcx.data_layout)?.to_ptr()?,
                    align
                )?.to_bytes()? as u64;
                Ok((ptr, len))
            }
            Value::ByValPair(ptr, val) => {
                let len = val.to_u128()?;
                assert_eq!(len as u64 as u128, len);
                Ok((ptr.into(), len as u64))
            }
            Value::ByVal(PrimVal::Undef) => err!(ReadUndefBytes),
            Value::ByVal(_) => bug!("expected ptr and length, got {:?}", value),
        }
    }
}

impl<'a, 'mir, 'tcx, M: Machine<'mir, 'tcx>> HasMemory<'a, 'mir, 'tcx, M> for Memory<'a, 'mir, 'tcx, M> {
    #[inline]
    fn memory_mut(&mut self) -> &mut Memory<'a, 'mir, 'tcx, M> {
        self
    }

    #[inline]
    fn memory(&self) -> &Memory<'a, 'mir, 'tcx, M> {
        self
    }
}

impl<'a, 'mir, 'tcx, M: Machine<'mir, 'tcx>> HasMemory<'a, 'mir, 'tcx, M> for EvalContext<'a, 'mir, 'tcx, M> {
    #[inline]
    fn memory_mut(&mut self) -> &mut Memory<'a, 'mir, 'tcx, M> {
        &mut self.memory
    }

    #[inline]
    fn memory(&self) -> &Memory<'a, 'mir, 'tcx, M> {
        &self.memory
    }
}

impl<'a, 'mir, 'tcx, M: Machine<'mir, 'tcx>> layout::HasDataLayout for &'a Memory<'a, 'mir, 'tcx, M> {
    #[inline]
    fn data_layout(&self) -> &TargetDataLayout {
        &self.tcx.data_layout
    }
}