1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
// Copyright 2017 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

use rustc::hir::def_id::DefId;
use rustc::mir::{ClosureRegionRequirements, ClosureOutlivesSubject, Mir};
use rustc::infer::InferCtxt;
use rustc::ty::{self, RegionKind, RegionVid};
use rustc::util::nodemap::FxHashMap;
use std::collections::BTreeSet;
use std::fmt::Debug;
use std::io;
use transform::MirSource;
use util::liveness::{LivenessResults, LocalSet};
use dataflow::FlowAtLocation;
use dataflow::MaybeInitializedPlaces;
use dataflow::move_paths::MoveData;

use util as mir_util;
use util::pretty::{self, ALIGN};
use self::mir_util::PassWhere;

mod constraint_generation;
pub mod explain_borrow;
pub(crate) mod region_infer;
mod renumber;
mod subtype_constraint_generation;
pub(crate) mod type_check;
mod universal_regions;

use self::region_infer::RegionInferenceContext;
use self::universal_regions::UniversalRegions;


/// Rewrites the regions in the MIR to use NLL variables, also
/// scraping out the set of universal regions (e.g., region parameters)
/// declared on the function. That set will need to be given to
/// `compute_regions`.
pub(in borrow_check) fn replace_regions_in_mir<'cx, 'gcx, 'tcx>(
    infcx: &InferCtxt<'cx, 'gcx, 'tcx>,
    def_id: DefId,
    param_env: ty::ParamEnv<'tcx>,
    mir: &mut Mir<'tcx>,
) -> UniversalRegions<'tcx> {
    debug!("replace_regions_in_mir(def_id={:?})", def_id);

    // Compute named region information. This also renumbers the inputs/outputs.
    let universal_regions = UniversalRegions::new(infcx, def_id, param_env);

    // Replace all remaining regions with fresh inference variables.
    renumber::renumber_mir(infcx, mir);

    let source = MirSource::item(def_id);
    mir_util::dump_mir(infcx.tcx, None, "renumber", &0, source, mir, |_, _| Ok(()));

    universal_regions
}

/// Computes the (non-lexical) regions from the input MIR.
///
/// This may result in errors being reported.
pub(in borrow_check) fn compute_regions<'cx, 'gcx, 'tcx>(
    infcx: &InferCtxt<'cx, 'gcx, 'tcx>,
    def_id: DefId,
    universal_regions: UniversalRegions<'tcx>,
    mir: &Mir<'tcx>,
    param_env: ty::ParamEnv<'gcx>,
    flow_inits: &mut FlowAtLocation<MaybeInitializedPlaces<'cx, 'gcx, 'tcx>>,
    move_data: &MoveData<'tcx>,
) -> (
    RegionInferenceContext<'tcx>,
    Option<ClosureRegionRequirements<'gcx>>,
) {
    // Run the MIR type-checker.
    let liveness = &LivenessResults::compute(mir);
    let constraint_sets = &type_check::type_check(
        infcx,
        param_env,
        mir,
        def_id,
        &universal_regions,
        &liveness,
        flow_inits,
        move_data,
    );

    // Create the region inference context, taking ownership of the region inference
    // data that was contained in `infcx`.
    let var_origins = infcx.take_region_var_origins();
    let mut regioncx = RegionInferenceContext::new(var_origins, universal_regions, mir);
    subtype_constraint_generation::generate(&mut regioncx, mir, constraint_sets);


    // Generate non-subtyping constraints.
    constraint_generation::generate_constraints(infcx, &mut regioncx, &mir);

    // Solve the region constraints.
    let closure_region_requirements = regioncx.solve(infcx, &mir, def_id);

    // Dump MIR results into a file, if that is enabled. This let us
    // write unit-tests, as well as helping with debugging.
    dump_mir_results(
        infcx,
        liveness,
        MirSource::item(def_id),
        &mir,
        &regioncx,
        &closure_region_requirements,
    );

    // We also have a `#[rustc_nll]` annotation that causes us to dump
    // information
    dump_annotation(infcx, &mir, def_id, &regioncx, &closure_region_requirements);

    (regioncx, closure_region_requirements)
}

fn dump_mir_results<'a, 'gcx, 'tcx>(
    infcx: &InferCtxt<'a, 'gcx, 'tcx>,
    liveness: &LivenessResults,
    source: MirSource,
    mir: &Mir<'tcx>,
    regioncx: &RegionInferenceContext,
    closure_region_requirements: &Option<ClosureRegionRequirements>,
) {
    if !mir_util::dump_enabled(infcx.tcx, "nll", source) {
        return;
    }

    let regular_liveness_per_location: FxHashMap<_, _> = mir.basic_blocks()
        .indices()
        .flat_map(|bb| {
            let mut results = vec![];
            liveness
                .regular
                .simulate_block(&mir, bb, |location, local_set| {
                    results.push((location, local_set.clone()));
                });
            results
        })
        .collect();

    let drop_liveness_per_location: FxHashMap<_, _> = mir.basic_blocks()
        .indices()
        .flat_map(|bb| {
            let mut results = vec![];
            liveness
                .drop
                .simulate_block(&mir, bb, |location, local_set| {
                    results.push((location, local_set.clone()));
                });
            results
        })
        .collect();

    mir_util::dump_mir(infcx.tcx, None, "nll", &0, source, mir, |pass_where, out| {
        match pass_where {
            // Before the CFG, dump out the values for each region variable.
            PassWhere::BeforeCFG => {
                regioncx.dump_mir(out)?;

                if let Some(closure_region_requirements) = closure_region_requirements {
                    writeln!(out, "|")?;
                    writeln!(out, "| Free Region Constraints")?;
                    for_each_region_constraint(closure_region_requirements, &mut |msg| {
                        writeln!(out, "| {}", msg)
                    })?;
                }
            }

            // Before each basic block, dump out the values
            // that are live on entry to the basic block.
            PassWhere::BeforeBlock(bb) => {
                let s = live_variable_set(&liveness.regular.ins[bb], &liveness.drop.ins[bb]);
                writeln!(out, "    | Live variables on entry to {:?}: {}", bb, s)?;
            }

            PassWhere::BeforeLocation(location) => {
                let s = live_variable_set(
                    &regular_liveness_per_location[&location],
                    &drop_liveness_per_location[&location],
                );
                writeln!(
                    out,
                    "{:ALIGN$} | Live variables on entry to {:?}: {}",
                    "",
                    location,
                    s,
                    ALIGN = ALIGN
                )?;
            }

            PassWhere::AfterLocation(_) | PassWhere::AfterCFG => {}
        }
        Ok(())
    });

    // Also dump the inference graph constraints as a graphviz file.
    let _: io::Result<()> = do catch {
        let mut file =
            pretty::create_dump_file(infcx.tcx, "regioncx.dot", None, "nll", &0, source)?;
        regioncx.dump_graphviz(&mut file)
    };
}

fn dump_annotation<'a, 'gcx, 'tcx>(
    infcx: &InferCtxt<'a, 'gcx, 'tcx>,
    mir: &Mir<'tcx>,
    mir_def_id: DefId,
    regioncx: &RegionInferenceContext,
    closure_region_requirements: &Option<ClosureRegionRequirements>,
) {
    let tcx = infcx.tcx;
    let base_def_id = tcx.closure_base_def_id(mir_def_id);
    if !tcx.has_attr(base_def_id, "rustc_regions") {
        return;
    }

    // When the enclosing function is tagged with `#[rustc_regions]`,
    // we dump out various bits of state as warnings. This is useful
    // for verifying that the compiler is behaving as expected.  These
    // warnings focus on the closure region requirements -- for
    // viewing the intraprocedural state, the -Zdump-mir output is
    // better.

    if let Some(closure_region_requirements) = closure_region_requirements {
        let mut err = tcx.sess
            .diagnostic()
            .span_note_diag(mir.span, "External requirements");

        regioncx.annotate(&mut err);

        err.note(&format!(
            "number of external vids: {}",
            closure_region_requirements.num_external_vids
        ));

        // Dump the region constraints we are imposing *between* those
        // newly created variables.
        for_each_region_constraint(closure_region_requirements, &mut |msg| {
            err.note(msg);
            Ok(())
        }).unwrap();

        err.emit();
    } else {
        let mut err = tcx.sess
            .diagnostic()
            .span_note_diag(mir.span, "No external requirements");
        regioncx.annotate(&mut err);
        err.emit();
    }
}

fn for_each_region_constraint(
    closure_region_requirements: &ClosureRegionRequirements,
    with_msg: &mut dyn FnMut(&str) -> io::Result<()>,
) -> io::Result<()> {
    for req in &closure_region_requirements.outlives_requirements {
        let subject: &dyn Debug = match &req.subject {
            ClosureOutlivesSubject::Region(subject) => subject,
            ClosureOutlivesSubject::Ty(ty) => ty,
        };
        with_msg(&format!(
            "where {:?}: {:?}",
            subject,
            req.outlived_free_region,
        ))?;
    }
    Ok(())
}

/// Right now, we piggy back on the `ReVar` to store our NLL inference
/// regions. These are indexed with `RegionVid`. This method will
/// assert that the region is a `ReVar` and extract its internal index.
/// This is reasonable because in our MIR we replace all universal regions
/// with inference variables.
pub trait ToRegionVid {
    fn to_region_vid(self) -> RegionVid;
}

impl<'tcx> ToRegionVid for &'tcx RegionKind {
    fn to_region_vid(self) -> RegionVid {
        if let ty::ReVar(vid) = self {
            *vid
        } else {
            bug!("region is not an ReVar: {:?}", self)
        }
    }
}

impl ToRegionVid for RegionVid {
    fn to_region_vid(self) -> RegionVid {
        self
    }
}

fn live_variable_set(regular: &LocalSet, drops: &LocalSet) -> String {
    // sort and deduplicate:
    let all_locals: BTreeSet<_> = regular.iter().chain(drops.iter()).collect();

    // construct a string with each local, including `(drop)` if it is
    // only dropped, versus a regular use.
    let mut string = String::new();
    for local in all_locals {
        string.push_str(&format!("{:?}", local));

        if !regular.contains(&local) {
            assert!(drops.contains(&local));
            string.push_str(" (drop)");
        }

        string.push_str(", ");
    }

    let len = if string.is_empty() {
        0
    } else {
        string.len() - 2
    };

    format!("[{}]", &string[..len])
}