1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
// Copyright 2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! Code related to match expressions. These are sufficiently complex
//! to warrant their own module and submodules. :) This main module
//! includes the high-level algorithm, the submodules contain the
//! details.

use build::{BlockAnd, BlockAndExtension, Builder};
use build::{GuardFrame, GuardFrameLocal, LocalsForNode};
use build::ForGuard::{self, OutsideGuard, RefWithinGuard, ValWithinGuard};
use rustc_data_structures::fx::FxHashMap;
use rustc_data_structures::bitvec::BitVector;
use rustc::ty::{self, Ty};
use rustc::mir::*;
use rustc::hir;
use hair::*;
use syntax::ast::{Name, NodeId};
use syntax_pos::Span;

// helper functions, broken out by category:
mod simplify;
mod test;
mod util;

/// ArmHasGuard is isomorphic to a boolean flag. It indicates whether
/// a match arm has a guard expression attached to it.
#[derive(Copy, Clone, Debug)]
pub(crate) struct ArmHasGuard(pub bool);

impl<'a, 'gcx, 'tcx> Builder<'a, 'gcx, 'tcx> {
    pub fn match_expr(&mut self,
                      destination: &Place<'tcx>,
                      span: Span,
                      mut block: BasicBlock,
                      discriminant: ExprRef<'tcx>,
                      arms: Vec<Arm<'tcx>>)
                      -> BlockAnd<()> {
        let tcx = self.hir.tcx();
        let discriminant_place = unpack!(block = self.as_place(block, discriminant));

        // Matching on a `discriminant_place` with an uninhabited type doesn't
        // generate any memory reads by itself, and so if the place "expression"
        // contains unsafe operations like raw pointer dereferences or union
        // field projections, we wouldn't know to require an `unsafe` block
        // around a `match` equivalent to `std::intrinsics::unreachable()`.
        // See issue #47412 for this hole being discovered in the wild.
        //
        // HACK(eddyb) Work around the above issue by adding a dummy inspection
        // of `discriminant_place`, specifically by applying `Rvalue::Discriminant`
        // (which will work regardless of type) and storing the result in a temp.
        //
        // NOTE: Under NLL, the above issue should no longer occur because it
        // injects a borrow of the matched input, which should have the same effect
        // as eddyb's hack. Once NLL is the default, we can remove the hack.

        let dummy_source_info = self.source_info(span);
        let dummy_access = Rvalue::Discriminant(discriminant_place.clone());
        let dummy_ty = dummy_access.ty(&self.local_decls, tcx);
        let dummy_temp = self.temp(dummy_ty, dummy_source_info.span);
        self.cfg.push_assign(block, dummy_source_info, &dummy_temp, dummy_access);

        let source_info = self.source_info(span);
        let borrowed_input_temp = if tcx.generate_borrow_of_any_match_input() {
            // The region is unknown at this point; we rely on NLL
            // inference to find an appropriate one. Therefore you can
            // only use this when NLL is turned on.
            assert!(tcx.use_mir_borrowck());
            let borrowed_input =
                Rvalue::Ref(tcx.types.re_empty, BorrowKind::Shared, discriminant_place.clone());
            let borrowed_input_ty = borrowed_input.ty(&self.local_decls, tcx);
            let borrowed_input_temp = self.temp(borrowed_input_ty, span);
            self.cfg.push_assign(block, source_info, &borrowed_input_temp, borrowed_input);
            Some(borrowed_input_temp)
        } else {
            None
        };

        let mut arm_blocks = ArmBlocks {
            blocks: arms.iter()
                        .map(|_| self.cfg.start_new_block())
                        .collect(),
        };

        // Get the arm bodies and their scopes, while declaring bindings.
        let arm_bodies: Vec<_> = arms.iter().map(|arm| {
            // BUG: use arm lint level
            let body = self.hir.mirror(arm.body.clone());
            let scope = self.declare_bindings(None, body.span,
                                              LintLevel::Inherited,
                                              &arm.patterns[0],
                                              ArmHasGuard(arm.guard.is_some()));
            (body, scope.unwrap_or(self.source_scope))
        }).collect();

        // create binding start block for link them by false edges
        let candidate_count = arms.iter().fold(0, |ac, c| ac + c.patterns.len());
        let pre_binding_blocks: Vec<_> = (0..candidate_count + 1)
            .map(|_| self.cfg.start_new_block()).collect();

        // assemble a list of candidates: there is one candidate per
        // pattern, which means there may be more than one candidate
        // *per arm*. These candidates are kept sorted such that the
        // highest priority candidate comes first in the list.
        // (i.e. same order as in source)

        let candidates: Vec<_> =
            arms.iter()
                .enumerate()
                .flat_map(|(arm_index, arm)| {
                    arm.patterns.iter()
                                .map(move |pat| (arm_index, pat, arm.guard.clone()))
                })
                .zip(pre_binding_blocks.iter().zip(pre_binding_blocks.iter().skip(1)))
                .map(|((arm_index, pattern, guard),
                       (pre_binding_block, next_candidate_pre_binding_block))| {

                    if let (true, Some(borrow_temp)) = (tcx.emit_read_for_match(),
                                                        borrowed_input_temp.clone()) {
                        // inject a fake read of the borrowed input at
                        // the start of each arm's pattern testing
                        // code.
                        //
                        // This should ensure that you cannot change
                        // the variant for an enum while you are in
                        // the midst of matching on it.

                        self.cfg.push(*pre_binding_block, Statement {
                            source_info,
                            kind: StatementKind::ReadForMatch(borrow_temp.clone()),
                        });
                    }

                    // One might ask: why not build up the match pair such that it
                    // matches via `borrowed_input_temp.deref()` instead of
                    // using the `discriminant_place` directly, as it is doing here?
                    //
                    // The basic answer is that if you do that, then you end up with
                    // accceses to a shared borrow of the input and that conflicts with
                    // any arms that look like e.g.
                    //
                    // match Some(&4) {
                    //     ref mut foo => {
                    //         ... /* mutate `foo` in arm body */ ...
                    //     }
                    // }
                    //
                    // (Perhaps we could further revise the MIR
                    //  construction here so that it only does a
                    //  shared borrow at the outset and delays doing
                    //  the mutable borrow until after the pattern is
                    //  matched *and* the guard (if any) for the arm
                    //  has been run.)

                    Candidate {
                        span: pattern.span,
                        match_pairs: vec![MatchPair::new(discriminant_place.clone(), pattern)],
                        bindings: vec![],
                        guard,
                        arm_index,
                        pre_binding_block: *pre_binding_block,
                        next_candidate_pre_binding_block: *next_candidate_pre_binding_block,
                    }
                })
                .collect();

        let outer_source_info = self.source_info(span);
        self.cfg.terminate(*pre_binding_blocks.last().unwrap(),
                           outer_source_info, TerminatorKind::Unreachable);

        // this will generate code to test discriminant_place and
        // branch to the appropriate arm block
        let otherwise = self.match_candidates(span, &mut arm_blocks, candidates, block);

        if !otherwise.is_empty() {
            // All matches are exhaustive. However, because some matches
            // only have exponentially-large exhaustive decision trees, we
            // sometimes generate an inexhaustive decision tree.
            //
            // In that case, the inexhaustive tips of the decision tree
            // can't be reached - terminate them with an `unreachable`.
            let source_info = self.source_info(span);

            let mut otherwise = otherwise;
            otherwise.sort();
            otherwise.dedup(); // variant switches can introduce duplicate target blocks
            for block in otherwise {
                self.cfg.terminate(block, source_info, TerminatorKind::Unreachable);
            }
        }

        // all the arm blocks will rejoin here
        let end_block = self.cfg.start_new_block();

        let outer_source_info = self.source_info(span);
        for (arm_index, (body, source_scope)) in arm_bodies.into_iter().enumerate() {
            let mut arm_block = arm_blocks.blocks[arm_index];
            // Re-enter the source scope we created the bindings in.
            self.source_scope = source_scope;
            unpack!(arm_block = self.into(destination, arm_block, body));
            self.cfg.terminate(arm_block, outer_source_info,
                               TerminatorKind::Goto { target: end_block });
        }
        self.source_scope = outer_source_info.scope;

        end_block.unit()
    }

    pub fn user_assert_ty(&mut self, block: BasicBlock, hir_id: hir::HirId,
                          var: NodeId, span: Span) {
        if self.hir.tcx().sess.opts.debugging_opts.disable_nll_user_type_assert { return; }

        let local_id = self.var_local_id(var, OutsideGuard);
        let source_info = self.source_info(span);

        debug!("user_assert_ty: local_id={:?}", hir_id.local_id);
        if let Some(c_ty) = self.hir.tables.user_provided_tys().get(hir_id) {
            debug!("user_assert_ty: c_ty={:?}", c_ty);
            self.cfg.push(block, Statement {
                source_info,
                kind: StatementKind::UserAssertTy(*c_ty, local_id),
            });
        }
    }

    pub fn expr_into_pattern(&mut self,
                             mut block: BasicBlock,
                             ty: Option<hir::HirId>,
                             irrefutable_pat: Pattern<'tcx>,
                             initializer: ExprRef<'tcx>)
                             -> BlockAnd<()> {
        // optimize the case of `let x = ...`
        match *irrefutable_pat.kind {
            PatternKind::Binding { mode: BindingMode::ByValue,
                                   var,
                                   subpattern: None, .. } => {
                let place = self.storage_live_binding(block, var, irrefutable_pat.span,
                                                      OutsideGuard);

                if let Some(ty) = ty {
                    self.user_assert_ty(block, ty, var, irrefutable_pat.span);
                }

                unpack!(block = self.into(&place, block, initializer));
                self.schedule_drop_for_binding(var, irrefutable_pat.span, OutsideGuard);
                block.unit()
            }
            _ => {
                let place = unpack!(block = self.as_place(block, initializer));
                self.place_into_pattern(block, irrefutable_pat, &place)
            }
        }
    }

    pub fn place_into_pattern(&mut self,
                               mut block: BasicBlock,
                               irrefutable_pat: Pattern<'tcx>,
                               initializer: &Place<'tcx>)
                               -> BlockAnd<()> {
        // create a dummy candidate
        let mut candidate = Candidate {
            span: irrefutable_pat.span,
            match_pairs: vec![MatchPair::new(initializer.clone(), &irrefutable_pat)],
            bindings: vec![],
            guard: None,

            // since we don't call `match_candidates`, next fields is unused
            arm_index: 0,
            pre_binding_block: block,
            next_candidate_pre_binding_block: block
        };

        // Simplify the candidate. Since the pattern is irrefutable, this should
        // always convert all match-pairs into bindings.
        unpack!(block = self.simplify_candidate(block, &mut candidate));

        if !candidate.match_pairs.is_empty() {
            span_bug!(candidate.match_pairs[0].pattern.span,
                      "match pairs {:?} remaining after simplifying \
                       irrefutable pattern",
                      candidate.match_pairs);
        }

        // now apply the bindings, which will also declare the variables
        self.bind_matched_candidate_for_arm_body(block, &candidate.bindings);

        block.unit()
    }

    /// Declares the bindings of the given pattern and returns the visibility scope
    /// for the bindings in this patterns, if such a scope had to be created.
    /// NOTE: Declaring the bindings should always be done in their drop scope.
    pub fn declare_bindings(&mut self,
                            mut visibility_scope: Option<SourceScope>,
                            scope_span: Span,
                            lint_level: LintLevel,
                            pattern: &Pattern<'tcx>,
                            has_guard: ArmHasGuard)
                            -> Option<SourceScope> {
        assert!(!(visibility_scope.is_some() && lint_level.is_explicit()),
                "can't have both a visibility and a lint scope at the same time");
        let mut scope = self.source_scope;
        self.visit_bindings(pattern, &mut |this, mutability, name, mode, var, span, ty| {
            if visibility_scope.is_none() {
                visibility_scope = Some(this.new_source_scope(scope_span,
                                                           LintLevel::Inherited,
                                                           None));
                // If we have lints, create a new source scope
                // that marks the lints for the locals. See the comment
                // on the `source_info` field for why this is needed.
                if lint_level.is_explicit() {
                    scope =
                        this.new_source_scope(scope_span, lint_level, None);
                }
            }
            let source_info = SourceInfo {
                span,
                scope,
            };
            let visibility_scope = visibility_scope.unwrap();
            this.declare_binding(source_info, visibility_scope, mutability, name, mode, var,
                                 ty, has_guard);
        });
        visibility_scope
    }

    pub fn storage_live_binding(&mut self,
                                block: BasicBlock,
                                var: NodeId,
                                span: Span,
                                for_guard: ForGuard)
                            -> Place<'tcx>
    {
        let local_id = self.var_local_id(var, for_guard);
        let source_info = self.source_info(span);
        self.cfg.push(block, Statement {
            source_info,
            kind: StatementKind::StorageLive(local_id)
        });
        Place::Local(local_id)
    }

    pub fn schedule_drop_for_binding(&mut self,
                                     var: NodeId,
                                     span: Span,
                                     for_guard: ForGuard) {
        let local_id = self.var_local_id(var, for_guard);
        let var_ty = self.local_decls[local_id].ty;
        let hir_id = self.hir.tcx().hir.node_to_hir_id(var);
        let region_scope = self.hir.region_scope_tree.var_scope(hir_id.local_id);
        self.schedule_drop(span, region_scope, &Place::Local(local_id), var_ty);
    }

    pub fn visit_bindings<F>(&mut self, pattern: &Pattern<'tcx>, f: &mut F)
        where F: FnMut(&mut Self, Mutability, Name, BindingMode, NodeId, Span, Ty<'tcx>)
    {
        match *pattern.kind {
            PatternKind::Binding { mutability, name, mode, var, ty, ref subpattern, .. } => {
                f(self, mutability, name, mode, var, pattern.span, ty);
                if let Some(subpattern) = subpattern.as_ref() {
                    self.visit_bindings(subpattern, f);
                }
            }
            PatternKind::Array { ref prefix, ref slice, ref suffix } |
            PatternKind::Slice { ref prefix, ref slice, ref suffix } => {
                for subpattern in prefix.iter().chain(slice).chain(suffix) {
                    self.visit_bindings(subpattern, f);
                }
            }
            PatternKind::Constant { .. } | PatternKind::Range { .. } | PatternKind::Wild => {
            }
            PatternKind::Deref { ref subpattern } => {
                self.visit_bindings(subpattern, f);
            }
            PatternKind::Leaf { ref subpatterns } |
            PatternKind::Variant { ref subpatterns, .. } => {
                for subpattern in subpatterns {
                    self.visit_bindings(&subpattern.pattern, f);
                }
            }
        }
    }
}


/// List of blocks for each arm (and potentially other metadata in the
/// future).
struct ArmBlocks {
    blocks: Vec<BasicBlock>,
}

#[derive(Clone, Debug)]
pub struct Candidate<'pat, 'tcx:'pat> {
    // span of the original pattern that gave rise to this candidate
    span: Span,

    // all of these must be satisfied...
    match_pairs: Vec<MatchPair<'pat, 'tcx>>,

    // ...these bindings established...
    bindings: Vec<Binding<'tcx>>,

    // ...and the guard must be evaluated...
    guard: Option<ExprRef<'tcx>>,

    // ...and then we branch to arm with this index.
    arm_index: usize,

    // ...and the blocks for add false edges between candidates
    pre_binding_block: BasicBlock,
    next_candidate_pre_binding_block: BasicBlock,
}

#[derive(Clone, Debug)]
struct Binding<'tcx> {
    span: Span,
    source: Place<'tcx>,
    name: Name,
    var_id: NodeId,
    var_ty: Ty<'tcx>,
    mutability: Mutability,
    binding_mode: BindingMode<'tcx>,
}

#[derive(Clone, Debug)]
pub struct MatchPair<'pat, 'tcx:'pat> {
    // this place...
    place: Place<'tcx>,

    // ... must match this pattern.
    pattern: &'pat Pattern<'tcx>,

    // HACK(eddyb) This is used to toggle whether a Slice pattern
    // has had its length checked. This is only necessary because
    // the "rest" part of the pattern right now has type &[T] and
    // as such, it requires an Rvalue::Slice to be generated.
    // See RFC 495 / issue #23121 for the eventual (proper) solution.
    slice_len_checked: bool
}

#[derive(Clone, Debug, PartialEq)]
enum TestKind<'tcx> {
    // test the branches of enum
    Switch {
        adt_def: &'tcx ty::AdtDef,
        variants: BitVector,
    },

    // test the branches of enum
    SwitchInt {
        switch_ty: Ty<'tcx>,
        options: Vec<u128>,
        indices: FxHashMap<&'tcx ty::Const<'tcx>, usize>,
    },

    // test for equality
    Eq {
        value: &'tcx ty::Const<'tcx>,
        ty: Ty<'tcx>,
    },

    // test whether the value falls within an inclusive or exclusive range
    Range {
        lo: Literal<'tcx>,
        hi: Literal<'tcx>,
        ty: Ty<'tcx>,
        end: hir::RangeEnd,
    },

    // test length of the slice is equal to len
    Len {
        len: u64,
        op: BinOp,
    },
}

#[derive(Debug)]
pub struct Test<'tcx> {
    span: Span,
    kind: TestKind<'tcx>,
}

///////////////////////////////////////////////////////////////////////////
// Main matching algorithm

impl<'a, 'gcx, 'tcx> Builder<'a, 'gcx, 'tcx> {
    /// The main match algorithm. It begins with a set of candidates
    /// `candidates` and has the job of generating code to determine
    /// which of these candidates, if any, is the correct one. The
    /// candidates are sorted such that the first item in the list
    /// has the highest priority. When a candidate is found to match
    /// the value, we will generate a branch to the appropriate
    /// block found in `arm_blocks`.
    ///
    /// The return value is a list of "otherwise" blocks. These are
    /// points in execution where we found that *NONE* of the
    /// candidates apply.  In principle, this means that the input
    /// list was not exhaustive, though at present we sometimes are
    /// not smart enough to recognize all exhaustive inputs.
    ///
    /// It might be surprising that the input can be inexhaustive.
    /// Indeed, initially, it is not, because all matches are
    /// exhaustive in Rust. But during processing we sometimes divide
    /// up the list of candidates and recurse with a non-exhaustive
    /// list. This is important to keep the size of the generated code
    /// under control. See `test_candidates` for more details.
    fn match_candidates<'pat>(&mut self,
                              span: Span,
                              arm_blocks: &mut ArmBlocks,
                              mut candidates: Vec<Candidate<'pat, 'tcx>>,
                              mut block: BasicBlock)
                              -> Vec<BasicBlock>
    {
        debug!("matched_candidate(span={:?}, block={:?}, candidates={:?})",
               span, block, candidates);

        // Start by simplifying candidates. Once this process is
        // complete, all the match pairs which remain require some
        // form of test, whether it be a switch or pattern comparison.
        for candidate in &mut candidates {
            unpack!(block = self.simplify_candidate(block, candidate));
        }

        // The candidates are sorted by priority. Check to see
        // whether the higher priority candidates (and hence at
        // the front of the vec) have satisfied all their match
        // pairs.
        let fully_matched =
            candidates.iter().take_while(|c| c.match_pairs.is_empty()).count();
        debug!("match_candidates: {:?} candidates fully matched", fully_matched);
        let mut unmatched_candidates = candidates.split_off(fully_matched);

        let fully_matched_with_guard =
            candidates.iter().take_while(|c| c.guard.is_some()).count();

        let unreachable_candidates = if fully_matched_with_guard + 1 < candidates.len() {
            candidates.split_off(fully_matched_with_guard + 1)
        } else {
            vec![]
        };

        for candidate in candidates {
            // If so, apply any bindings, test the guard (if any), and
            // branch to the arm.
            if let Some(b) = self.bind_and_guard_matched_candidate(block, arm_blocks, candidate) {
                block = b;
            } else {
                // if None is returned, then any remaining candidates
                // are unreachable (at least not through this path).
                // Link them with false edges.
                debug!("match_candidates: add false edges for unreachable {:?} and unmatched {:?}",
                       unreachable_candidates, unmatched_candidates);
                for candidate in unreachable_candidates {
                    let source_info = self.source_info(candidate.span);
                    let target = self.cfg.start_new_block();
                    if let Some(otherwise) = self.bind_and_guard_matched_candidate(target,
                                                                                   arm_blocks,
                                                                                   candidate) {
                        self.cfg.terminate(otherwise, source_info, TerminatorKind::Unreachable);
                    }
                }

                if unmatched_candidates.is_empty() {
                    return vec![]
                } else {
                    let target = self.cfg.start_new_block();
                    return self.match_candidates(span, arm_blocks, unmatched_candidates, target);
                }
            }
        }

        // If there are no candidates that still need testing, we're done.
        // Since all matches are exhaustive, execution should never reach this point.
        if unmatched_candidates.is_empty() {
            return vec![block];
        }

        // Test candidates where possible.
        let (otherwise, tested_candidates) =
            self.test_candidates(span, arm_blocks, &unmatched_candidates, block);

        // If the target candidates were exhaustive, then we are done.
        // But for borrowck continue build decision tree.

        // If all candidates were sorted into `target_candidates` somewhere, then
        // the initial set was inexhaustive.
        let untested_candidates = unmatched_candidates.split_off(tested_candidates);
        if untested_candidates.len() == 0 {
            return otherwise;
        }

        // Otherwise, let's process those remaining candidates.
        let join_block = self.join_otherwise_blocks(span, otherwise);
        self.match_candidates(span, arm_blocks, untested_candidates, join_block)
    }

    fn join_otherwise_blocks(&mut self,
                             span: Span,
                             mut otherwise: Vec<BasicBlock>)
                             -> BasicBlock
    {
        let source_info = self.source_info(span);
        otherwise.sort();
        otherwise.dedup(); // variant switches can introduce duplicate target blocks
        if otherwise.len() == 1 {
            otherwise[0]
        } else {
            let join_block = self.cfg.start_new_block();
            for block in otherwise {
                self.cfg.terminate(block, source_info,
                                   TerminatorKind::Goto { target: join_block });
            }
            join_block
        }
    }

    /// This is the most subtle part of the matching algorithm.  At
    /// this point, the input candidates have been fully simplified,
    /// and so we know that all remaining match-pairs require some
    /// sort of test. To decide what test to do, we take the highest
    /// priority candidate (last one in the list) and extract the
    /// first match-pair from the list. From this we decide what kind
    /// of test is needed using `test`, defined in the `test` module.
    ///
    /// *Note:* taking the first match pair is somewhat arbitrary, and
    /// we might do better here by choosing more carefully what to
    /// test.
    ///
    /// For example, consider the following possible match-pairs:
    ///
    /// 1. `x @ Some(P)` -- we will do a `Switch` to decide what variant `x` has
    /// 2. `x @ 22` -- we will do a `SwitchInt`
    /// 3. `x @ 3..5` -- we will do a range test
    /// 4. etc.
    ///
    /// Once we know what sort of test we are going to perform, this
    /// test may also help us with other candidates. So we walk over
    /// the candidates (from high to low priority) and check. This
    /// gives us, for each outcome of the test, a transformed list of
    /// candidates.  For example, if we are testing the current
    /// variant of `x.0`, and we have a candidate `{x.0 @ Some(v), x.1
    /// @ 22}`, then we would have a resulting candidate of `{(x.0 as
    /// Some).0 @ v, x.1 @ 22}`. Note that the first match-pair is now
    /// simpler (and, in fact, irrefutable).
    ///
    /// But there may also be candidates that the test just doesn't
    /// apply to. The classical example involves wildcards:
    ///
    /// ```
    /// # let (x, y, z) = (true, true, true);
    /// match (x, y, z) {
    ///     (true, _, true) => true,    // (0)
    ///     (_, true, _) => true,       // (1)
    ///     (false, false, _) => false, // (2)
    ///     (true, _, false) => false,  // (3)
    /// }
    /// ```
    ///
    /// In that case, after we test on `x`, there are 2 overlapping candidate
    /// sets:
    ///
    /// - If the outcome is that `x` is true, candidates 0, 1, and 3
    /// - If the outcome is that `x` is false, candidates 1 and 2
    ///
    /// Here, the traditional "decision tree" method would generate 2
    /// separate code-paths for the 2 separate cases.
    ///
    /// In some cases, this duplication can create an exponential amount of
    /// code. This is most easily seen by noticing that this method terminates
    /// with precisely the reachable arms being reachable - but that problem
    /// is trivially NP-complete:
    ///
    /// ```rust
    ///     match (var0, var1, var2, var3, ..) {
    ///         (true, _, _, false, true, ...) => false,
    ///         (_, true, true, false, _, ...) => false,
    ///         (false, _, false, false, _, ...) => false,
    ///         ...
    ///         _ => true
    ///     }
    /// ```
    ///
    /// Here the last arm is reachable only if there is an assignment to
    /// the variables that does not match any of the literals. Therefore,
    /// compilation would take an exponential amount of time in some cases.
    ///
    /// That kind of exponential worst-case might not occur in practice, but
    /// our simplistic treatment of constants and guards would make it occur
    /// in very common situations - for example #29740:
    ///
    /// ```rust
    /// match x {
    ///     "foo" if foo_guard => ...,
    ///     "bar" if bar_guard => ...,
    ///     "baz" if baz_guard => ...,
    ///     ...
    /// }
    /// ```
    ///
    /// Here we first test the match-pair `x @ "foo"`, which is an `Eq` test.
    ///
    /// It might seem that we would end up with 2 disjoint candidate
    /// sets, consisting of the first candidate or the other 3, but our
    /// algorithm doesn't reason about "foo" being distinct from the other
    /// constants; it considers the latter arms to potentially match after
    /// both outcomes, which obviously leads to an exponential amount
    /// of tests.
    ///
    /// To avoid these kinds of problems, our algorithm tries to ensure
    /// the amount of generated tests is linear. When we do a k-way test,
    /// we return an additional "unmatched" set alongside the obvious `k`
    /// sets. When we encounter a candidate that would be present in more
    /// than one of the sets, we put it and all candidates below it into the
    /// "unmatched" set. This ensures these `k+1` sets are disjoint.
    ///
    /// After we perform our test, we branch into the appropriate candidate
    /// set and recurse with `match_candidates`. These sub-matches are
    /// obviously inexhaustive - as we discarded our otherwise set - so
    /// we set their continuation to do `match_candidates` on the
    /// "unmatched" set (which is again inexhaustive).
    ///
    /// If you apply this to the above test, you basically wind up
    /// with an if-else-if chain, testing each candidate in turn,
    /// which is precisely what we want.
    ///
    /// In addition to avoiding exponential-time blowups, this algorithm
    /// also has nice property that each guard and arm is only generated
    /// once.
    fn test_candidates<'pat>(&mut self,
                             span: Span,
                             arm_blocks: &mut ArmBlocks,
                             candidates: &[Candidate<'pat, 'tcx>],
                             block: BasicBlock)
                             -> (Vec<BasicBlock>, usize)
    {
        // extract the match-pair from the highest priority candidate
        let match_pair = &candidates.first().unwrap().match_pairs[0];
        let mut test = self.test(match_pair);

        // most of the time, the test to perform is simply a function
        // of the main candidate; but for a test like SwitchInt, we
        // may want to add cases based on the candidates that are
        // available
        match test.kind {
            TestKind::SwitchInt { switch_ty, ref mut options, ref mut indices } => {
                for candidate in candidates.iter() {
                    if !self.add_cases_to_switch(&match_pair.place,
                                                 candidate,
                                                 switch_ty,
                                                 options,
                                                 indices) {
                        break;
                    }
                }
            }
            TestKind::Switch { adt_def: _, ref mut variants} => {
                for candidate in candidates.iter() {
                    if !self.add_variants_to_switch(&match_pair.place,
                                                    candidate,
                                                    variants) {
                        break;
                    }
                }
            }
            _ => { }
        }

        // perform the test, branching to one of N blocks. For each of
        // those N possible outcomes, create a (initially empty)
        // vector of candidates. Those are the candidates that still
        // apply if the test has that particular outcome.
        debug!("match_candidates: test={:?} match_pair={:?}", test, match_pair);
        let target_blocks = self.perform_test(block, &match_pair.place, &test);
        let mut target_candidates: Vec<_> = (0..target_blocks.len()).map(|_| vec![]).collect();

        // Sort the candidates into the appropriate vector in
        // `target_candidates`. Note that at some point we may
        // encounter a candidate where the test is not relevant; at
        // that point, we stop sorting.
        let tested_candidates =
            candidates.iter()
                      .take_while(|c| self.sort_candidate(&match_pair.place,
                                                          &test,
                                                          c,
                                                          &mut target_candidates))
                      .count();
        assert!(tested_candidates > 0); // at least the last candidate ought to be tested
        debug!("tested_candidates: {}", tested_candidates);
        debug!("untested_candidates: {}", candidates.len() - tested_candidates);

        // For each outcome of test, process the candidates that still
        // apply. Collect a list of blocks where control flow will
        // branch if one of the `target_candidate` sets is not
        // exhaustive.
        let otherwise: Vec<_> =
            target_blocks.into_iter()
                         .zip(target_candidates)
                         .flat_map(|(target_block, target_candidates)| {
                             self.match_candidates(span,
                                                   arm_blocks,
                                                   target_candidates,
                                                   target_block)
                         })
                         .collect();

        (otherwise, tested_candidates)
    }

    /// Initializes each of the bindings from the candidate by
    /// moving/copying/ref'ing the source as appropriate. Tests the
    /// guard, if any, and then branches to the arm. Returns the block
    /// for the case where the guard fails.
    ///
    /// Note: we check earlier that if there is a guard, there cannot
    /// be move bindings.  This isn't really important for the
    /// self-consistency of this fn, but the reason for it should be
    /// clear: after we've done the assignments, if there were move
    /// bindings, further tests would be a use-after-move (which would
    /// in turn be detected by the borrowck code that runs on the
    /// MIR).
    fn bind_and_guard_matched_candidate<'pat>(&mut self,
                                              mut block: BasicBlock,
                                              arm_blocks: &mut ArmBlocks,
                                              candidate: Candidate<'pat, 'tcx>)
                                              -> Option<BasicBlock> {
        debug!("bind_and_guard_matched_candidate(block={:?}, candidate={:?})",
               block, candidate);

        debug_assert!(candidate.match_pairs.is_empty());

        let arm_block = arm_blocks.blocks[candidate.arm_index];
        let candidate_source_info = self.source_info(candidate.span);

        self.cfg.terminate(block, candidate_source_info,
                               TerminatorKind::Goto { target: candidate.pre_binding_block });

        block = self.cfg.start_new_block();
        self.cfg.terminate(candidate.pre_binding_block, candidate_source_info,
                               TerminatorKind::FalseEdges {
                                   real_target: block,
                                   imaginary_targets:
                                       vec![candidate.next_candidate_pre_binding_block],
                               });


        // rust-lang/rust#27282: The `autoref` business deserves some
        // explanation here.
        //
        // The intent of the `autoref` flag is that when it is true,
        // then any pattern bindings of type T will map to a `&T`
        // within the context of the guard expression, but will
        // continue to map to a `T` in the context of the arm body. To
        // avoid surfacing this distinction in the user source code
        // (which would be a severe change to the language and require
        // far more revision to the compiler), when `autoref` is true,
        // then any occurrence of the identifier in the guard
        // expression will automatically get a deref op applied to it.
        //
        // So an input like:
        //
        // ```
        // let place = Foo::new();
        // match place { foo if inspect(foo)
        //     => feed(foo), ...  }
        // ```
        //
        // will be treated as if it were really something like:
        //
        // ```
        // let place = Foo::new();
        // match place { Foo { .. } if { let tmp1 = &place; inspect(*tmp1) }
        //     => { let tmp2 = place; feed(tmp2) }, ... }
        //
        // And an input like:
        //
        // ```
        // let place = Foo::new();
        // match place { ref mut foo if inspect(foo)
        //     => feed(foo), ...  }
        // ```
        //
        // will be treated as if it were really something like:
        //
        // ```
        // let place = Foo::new();
        // match place { Foo { .. } if { let tmp1 = & &mut place; inspect(*tmp1) }
        //     => { let tmp2 = &mut place; feed(tmp2) }, ... }
        // ```
        //
        // In short, any pattern binding will always look like *some*
        // kind of `&T` within the guard at least in terms of how the
        // MIR-borrowck views it, and this will ensure that guard
        // expressions cannot mutate their the match inputs via such
        // bindings. (It also ensures that guard expressions can at
        // most *copy* values from such bindings; non-Copy things
        // cannot be moved via pattern bindings in guard expressions.)
        //
        // ----
        //
        // Implementation notes (under assumption `autoref` is true).
        //
        // To encode the distinction above, we must inject the
        // temporaries `tmp1` and `tmp2`.
        //
        // There are two cases of interest: binding by-value, and binding by-ref.
        //
        // 1. Binding by-value: Things are simple.
        //
        //    * Establishing `tmp1` creates a reference into the
        //      matched place. This code is emitted by
        //      bind_matched_candidate_for_guard.
        //
        //    * `tmp2` is only initialized "lazily", after we have
        //      checked the guard. Thus, the code that can trigger
        //      moves out of the candidate can only fire after the
        //      guard evaluated to true. This initialization code is
        //      emitted by bind_matched_candidate_for_arm.
        //
        // 2. Binding by-reference: Things are tricky.
        //
        //    * Here, the guard expression wants a `&&` or `&&mut`
        //      into the original input. This means we need to borrow
        //      a reference that we do not immediately have at hand
        //      (because all we have is the places associated with the
        //      match input itself; it is up to us to create a place
        //      holding a `&` or `&mut` that we can then borrow).

        let autoref = self.hir.tcx().all_pat_vars_are_implicit_refs_within_guards();
        if let Some(guard) = candidate.guard {
            if autoref {
                self.bind_matched_candidate_for_guard(block, &candidate.bindings);
                let guard_frame = GuardFrame {
                    locals: candidate.bindings.iter()
                        .map(|b| GuardFrameLocal::new(b.var_id, b.binding_mode))
                        .collect(),
                };
                debug!("Entering guard building context: {:?}", guard_frame);
                self.guard_context.push(guard_frame);
            } else {
                self.bind_matched_candidate_for_arm_body(block, &candidate.bindings);
            }

            // the block to branch to if the guard fails; if there is no
            // guard, this block is simply unreachable
            let guard = self.hir.mirror(guard);
            let source_info = self.source_info(guard.span);
            let cond = unpack!(block = self.as_local_operand(block, guard));
            if autoref {
                let guard_frame = self.guard_context.pop().unwrap();
                debug!("Exiting guard building context with locals: {:?}", guard_frame);
            }

            let false_edge_block = self.cfg.start_new_block();

            // We want to ensure that the matched candidates are bound
            // after we have confirmed this candidate *and* any
            // associated guard; Binding them on `block` is too soon,
            // because that would be before we've checked the result
            // from the guard.
            //
            // But binding them on `arm_block` is *too late*, because
            // then all of the candidates for a single arm would be
            // bound in the same place, that would cause a case like:
            //
            // ```rust
            // match (30, 2) {
            //     (mut x, 1) | (2, mut x) if { true } => { ... }
            //     ...                                 // ^^^^^^^ (this is `arm_block`)
            // }
            // ```
            //
            // would yield a `arm_block` something like:
            //
            // ```
            // StorageLive(_4);        // _4 is `x`
            // _4 = &mut (_1.0: i32);  // this is handling `(mut x, 1)` case
            // _4 = &mut (_1.1: i32);  // this is handling `(2, mut x)` case
            // ```
            //
            // and that is clearly not correct.
            let post_guard_block = self.cfg.start_new_block();
            self.cfg.terminate(block, source_info,
                               TerminatorKind::if_(self.hir.tcx(), cond, post_guard_block,
                                                   false_edge_block));

            if autoref {
                self.bind_matched_candidate_for_arm_body(post_guard_block, &candidate.bindings);
            }

            self.cfg.terminate(post_guard_block, source_info,
                               TerminatorKind::Goto { target: arm_block });

            let otherwise = self.cfg.start_new_block();

            self.cfg.terminate(false_edge_block, source_info,
                               TerminatorKind::FalseEdges {
                                   real_target: otherwise,
                                   imaginary_targets:
                                       vec![candidate.next_candidate_pre_binding_block],
                               });
            Some(otherwise)
        } else {
            // (Here, it is not too early to bind the matched
            // candidate on `block`, because there is no guard result
            // that we have to inspect before we bind them.)
            self.bind_matched_candidate_for_arm_body(block, &candidate.bindings);
            self.cfg.terminate(block, candidate_source_info,
                               TerminatorKind::Goto { target: arm_block });
            None
        }
    }

    // Only called when all_pat_vars_are_implicit_refs_within_guards,
    // and thus all code/comments assume we are in that context.
    fn bind_matched_candidate_for_guard(&mut self,
                                        block: BasicBlock,
                                        bindings: &[Binding<'tcx>]) {
        debug!("bind_matched_candidate_for_guard(block={:?}, bindings={:?})",
               block, bindings);

        // Assign each of the bindings. Since we are binding for a
        // guard expression, this will never trigger moves out of the
        // candidate.
        let re_empty = self.hir.tcx().types.re_empty;
        for binding in bindings {
            let source_info = self.source_info(binding.span);

            // For each pattern ident P of type T, `ref_for_guard` is
            // a reference R: &T pointing to the location matched by
            // the pattern, and every occurrence of P within a guard
            // denotes *R.
            let ref_for_guard = self.storage_live_binding(
                block, binding.var_id, binding.span, RefWithinGuard);
            // Question: Why schedule drops if bindings are all
            // shared-&'s?  Answer: Because schedule_drop_for_binding
            // also emits StorageDead's for those locals.
            self.schedule_drop_for_binding(binding.var_id, binding.span, RefWithinGuard);
            match binding.binding_mode {
                BindingMode::ByValue => {
                    let rvalue = Rvalue::Ref(re_empty, BorrowKind::Shared, binding.source.clone());
                    self.cfg.push_assign(block, source_info, &ref_for_guard, rvalue);
                }
                BindingMode::ByRef(region, borrow_kind) => {
                    // Tricky business: For `ref id` and `ref mut id`
                    // patterns, we want `id` within the guard to
                    // correspond to a temp of type `& &T` or `& &mut
                    // T` (i.e. a "borrow of a borrow") that is
                    // implicitly dereferenced.
                    //
                    // To borrow a borrow, we need that inner borrow
                    // to point to. So, create a temp for the inner
                    // borrow, and then take a reference to it.
                    //
                    // Note: the temp created here is *not* the one
                    // used by the arm body itself. This eases
                    // observing two-phase borrow restrictions.
                    let val_for_guard = self.storage_live_binding(
                        block, binding.var_id, binding.span, ValWithinGuard);
                    self.schedule_drop_for_binding(binding.var_id, binding.span, ValWithinGuard);

                    // rust-lang/rust#27282: We reuse the two-phase
                    // borrow infrastructure so that the mutable
                    // borrow (whose mutabilty is *unusable* within
                    // the guard) does not conflict with the implicit
                    // borrow of the whole match input. See additional
                    // discussion on rust-lang/rust#49870.
                    let borrow_kind = match borrow_kind {
                        BorrowKind::Shared | BorrowKind::Unique => borrow_kind,
                        BorrowKind::Mut { .. } => BorrowKind::Mut { allow_two_phase_borrow: true },
                    };
                    let rvalue = Rvalue::Ref(region, borrow_kind, binding.source.clone());
                    self.cfg.push_assign(block, source_info, &val_for_guard, rvalue);
                    let rvalue = Rvalue::Ref(region, BorrowKind::Shared, val_for_guard);
                    self.cfg.push_assign(block, source_info, &ref_for_guard, rvalue);
                }
            }
        }
    }

    fn bind_matched_candidate_for_arm_body(&mut self,
                                           block: BasicBlock,
                                           bindings: &[Binding<'tcx>]) {
        debug!("bind_matched_candidate_for_arm_body(block={:?}, bindings={:?}", block, bindings);

        // Assign each of the bindings. This may trigger moves out of the candidate.
        for binding in bindings {
            let source_info = self.source_info(binding.span);
            let local = self.storage_live_binding(block, binding.var_id, binding.span,
                                                  OutsideGuard);
            self.schedule_drop_for_binding(binding.var_id, binding.span, OutsideGuard);
            let rvalue = match binding.binding_mode {
                BindingMode::ByValue => {
                    Rvalue::Use(self.consume_by_copy_or_move(binding.source.clone()))
                }
                BindingMode::ByRef(region, borrow_kind) => {
                    Rvalue::Ref(region, borrow_kind, binding.source.clone())
                }
            };
            self.cfg.push_assign(block, source_info, &local, rvalue);
        }
    }

    /// Each binding (`ref mut var`/`ref var`/`mut var`/`var`, where
    /// the bound `var` has type `T` in the arm body) in a pattern
    /// maps to *two* locals. The first local is a binding for
    /// occurrences of `var` in the guard, which will all have type
    /// `&T`. The second local is a binding for occurrences of `var`
    /// in the arm body, which will have type `T`.
    fn declare_binding(&mut self,
                       source_info: SourceInfo,
                       visibility_scope: SourceScope,
                       mutability: Mutability,
                       name: Name,
                       mode: BindingMode,
                       var_id: NodeId,
                       var_ty: Ty<'tcx>,
                       has_guard: ArmHasGuard)
    {
        debug!("declare_binding(var_id={:?}, name={:?}, mode={:?}, var_ty={:?}, \
                visibility_scope={:?}, source_info={:?})",
               var_id, name, mode, var_ty, visibility_scope, source_info);

        let tcx = self.hir.tcx();
        let binding_mode = match mode {
            BindingMode::ByValue => ty::BindingMode::BindByValue(mutability.into()),
            BindingMode::ByRef { .. } => ty::BindingMode::BindByReference(mutability.into()),
        };
        let local = LocalDecl::<'tcx> {
            mutability,
            ty: var_ty.clone(),
            name: Some(name),
            source_info,
            visibility_scope,
            internal: false,
            is_user_variable: Some(ClearCrossCrate::Set(BindingForm::Var(VarBindingForm {
                binding_mode,
                // hypothetically, `visit_bindings` could try to unzip
                // an outermost hir::Ty as we descend, matching up
                // idents in pat; but complex w/ unclear UI payoff.
                // Instead, just abandon providing diagnostic info.
                opt_ty_info: None,
            }))),
        };
        let for_arm_body = self.local_decls.push(local.clone());
        let locals = if has_guard.0 && tcx.all_pat_vars_are_implicit_refs_within_guards() {
            let val_for_guard =  self.local_decls.push(local);
            let ref_for_guard = self.local_decls.push(LocalDecl::<'tcx> {
                mutability,
                ty: tcx.mk_imm_ref(tcx.types.re_empty, var_ty),
                name: Some(name),
                source_info,
                visibility_scope,
                // FIXME: should these secretly injected ref_for_guard's be marked as `internal`?
                internal: false,
                is_user_variable: None,
            });
            LocalsForNode::Three { val_for_guard, ref_for_guard, for_arm_body }
        } else {
            LocalsForNode::One(for_arm_body)
        };
        debug!("declare_binding: vars={:?}", locals);
        self.var_indices.insert(var_id, locals);
    }
}