1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
use abi::call::{ArgAttribute, ArgType, CastTarget, FnType, PassMode, Reg, RegKind, Uniform};
use abi::{self, HasDataLayout, LayoutOf, Size, TyLayout, TyLayoutMethods};
fn extend_integer_width_mips<Ty>(arg: &mut ArgType<Ty>, bits: u64) {
if let abi::Abi::Scalar(ref scalar) = arg.layout.abi {
if let abi::Int(i, signed) = scalar.value {
if !signed && i.size().bits() == 32 {
if let PassMode::Direct(ref mut attrs) = arg.mode {
attrs.set(ArgAttribute::SExt);
return;
}
}
}
}
arg.extend_integer_width_to(bits);
}
fn float_reg<'a, Ty, C>(cx: C, ret: &ArgType<'a, Ty>, i: usize) -> Option<Reg>
where Ty: TyLayoutMethods<'a, C> + Copy,
C: LayoutOf<Ty = Ty, TyLayout = TyLayout<'a, Ty>> + HasDataLayout
{
match ret.layout.field(cx, i).abi {
abi::Abi::Scalar(ref scalar) => match scalar.value {
abi::Float(abi::FloatTy::F32) => Some(Reg::f32()),
abi::Float(abi::FloatTy::F64) => Some(Reg::f64()),
_ => None
},
_ => None
}
}
fn classify_ret_ty<'a, Ty, C>(cx: C, ret: &mut ArgType<'a, Ty>)
where Ty: TyLayoutMethods<'a, C> + Copy,
C: LayoutOf<Ty = Ty, TyLayout = TyLayout<'a, Ty>> + HasDataLayout
{
if !ret.layout.is_aggregate() {
extend_integer_width_mips(ret, 64);
return;
}
let size = ret.layout.size;
let bits = size.bits();
if bits <= 128 {
if let abi::FieldPlacement::Arbitrary { .. } = ret.layout.fields {
if ret.layout.fields.count() == 1 {
if let Some(reg) = float_reg(cx, ret, 0) {
ret.cast_to(reg);
return;
}
} else if ret.layout.fields.count() == 2 {
if let Some(reg0) = float_reg(cx, ret, 0) {
if let Some(reg1) = float_reg(cx, ret, 1) {
ret.cast_to(CastTarget::pair(reg0, reg1));
return;
}
}
}
}
ret.cast_to(Uniform {
unit: Reg::i64(),
total: size
});
} else {
ret.make_indirect();
}
}
fn classify_arg_ty<'a, Ty, C>(cx: C, arg: &mut ArgType<'a, Ty>)
where Ty: TyLayoutMethods<'a, C> + Copy,
C: LayoutOf<Ty = Ty, TyLayout = TyLayout<'a, Ty>> + HasDataLayout
{
if !arg.layout.is_aggregate() {
extend_integer_width_mips(arg, 64);
return;
}
let dl = cx.data_layout();
let size = arg.layout.size;
let mut prefix = [None; 8];
let mut prefix_index = 0;
match arg.layout.fields {
abi::FieldPlacement::Array { .. } => {
arg.make_indirect();
return;
}
abi::FieldPlacement::Union(_) => {
},
abi::FieldPlacement::Arbitrary { .. } => {
let mut last_offset = Size::ZERO;
for i in 0..arg.layout.fields.count() {
let field = arg.layout.field(cx, i);
let offset = arg.layout.fields.offset(i);
if let abi::Abi::Scalar(ref scalar) = field.abi {
if let abi::Float(abi::FloatTy::F64) = scalar.value {
if offset.is_abi_aligned(dl.f64_align) {
assert!(last_offset.is_abi_aligned(dl.f64_align));
for _ in 0..((offset - last_offset).bits() / 64)
.min((prefix.len() - prefix_index) as u64) {
prefix[prefix_index] = Some(RegKind::Integer);
prefix_index += 1;
}
if prefix_index == prefix.len() {
break;
}
prefix[prefix_index] = Some(RegKind::Float);
prefix_index += 1;
last_offset = offset + Reg::f64().size;
}
}
}
}
}
};
let rest_size = size - Size::from_bytes(8) * prefix_index as u64;
arg.cast_to(CastTarget {
prefix: prefix,
prefix_chunk: Size::from_bytes(8),
rest: Uniform { unit: Reg::i64(), total: rest_size }
});
}
pub fn compute_abi_info<'a, Ty, C>(cx: C, fty: &mut FnType<'a, Ty>)
where Ty: TyLayoutMethods<'a, C> + Copy,
C: LayoutOf<Ty = Ty, TyLayout = TyLayout<'a, Ty>> + HasDataLayout
{
if !fty.ret.is_ignore() {
classify_ret_ty(cx, &mut fty.ret);
}
for arg in &mut fty.args {
if arg.is_ignore() { continue; }
classify_arg_ty(cx, arg);
}
}