1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
// Copyright 2013-2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

use attributes;
use back::bytecode::{self, RLIB_BYTECODE_EXTENSION};
use back::lto::{self, ModuleBuffer, ThinBuffer, SerializedModule};
use back::link::{self, get_linker, remove};
use back::command::Command;
use back::linker::LinkerInfo;
use back::symbol_export::ExportedSymbols;
use base;
use consts;
use memmap;
use rustc_incremental::{copy_cgu_workproducts_to_incr_comp_cache_dir,
                        in_incr_comp_dir, in_incr_comp_dir_sess};
use rustc::dep_graph::{WorkProduct, WorkProductId, WorkProductFileKind};
use rustc::middle::cstore::EncodedMetadata;
use rustc::session::config::{self, OutputFilenames, OutputType, Passes, Sanitizer, Lto};
use rustc::session::Session;
use rustc::util::nodemap::FxHashMap;
use time_graph::{self, TimeGraph, Timeline};
use llvm::{self, DiagnosticInfo, PassManager, SMDiagnostic};
use llvm_util;
use {CodegenResults, ModuleCodegen, CompiledModule, ModuleKind, // ModuleLlvm,
     CachedModuleCodegen};
use CrateInfo;
use rustc::hir::def_id::{CrateNum, LOCAL_CRATE};
use rustc::ty::TyCtxt;
use rustc::util::common::{time_ext, time_depth, set_time_depth, print_time_passes_entry};
use rustc_fs_util::{path2cstr, link_or_copy};
use rustc_data_structures::small_c_str::SmallCStr;
use rustc_data_structures::svh::Svh;
use errors::{self, Handler, Level, DiagnosticBuilder, FatalError, DiagnosticId};
use errors::emitter::{Emitter};
use syntax::attr;
use syntax::ext::hygiene::Mark;
use syntax_pos::MultiSpan;
use syntax_pos::symbol::Symbol;
use type_::Type;
use context::{is_pie_binary, get_reloc_model};
use common::{C_bytes_in_context, val_ty};
use jobserver::{Client, Acquired};
use rustc_demangle;

use std::any::Any;
use std::ffi::{CString, CStr};
use std::fs;
use std::io::{self, Write};
use std::mem;
use std::path::{Path, PathBuf};
use std::str;
use std::sync::Arc;
use std::sync::mpsc::{channel, Sender, Receiver};
use std::slice;
use std::time::Instant;
use std::thread;
use libc::{c_uint, c_void, c_char, size_t};

pub const RELOC_MODEL_ARGS : [(&'static str, llvm::RelocMode); 7] = [
    ("pic", llvm::RelocMode::PIC),
    ("static", llvm::RelocMode::Static),
    ("default", llvm::RelocMode::Default),
    ("dynamic-no-pic", llvm::RelocMode::DynamicNoPic),
    ("ropi", llvm::RelocMode::ROPI),
    ("rwpi", llvm::RelocMode::RWPI),
    ("ropi-rwpi", llvm::RelocMode::ROPI_RWPI),
];

pub const CODE_GEN_MODEL_ARGS: &[(&str, llvm::CodeModel)] = &[
    ("small", llvm::CodeModel::Small),
    ("kernel", llvm::CodeModel::Kernel),
    ("medium", llvm::CodeModel::Medium),
    ("large", llvm::CodeModel::Large),
];

pub const TLS_MODEL_ARGS : [(&'static str, llvm::ThreadLocalMode); 4] = [
    ("global-dynamic", llvm::ThreadLocalMode::GeneralDynamic),
    ("local-dynamic", llvm::ThreadLocalMode::LocalDynamic),
    ("initial-exec", llvm::ThreadLocalMode::InitialExec),
    ("local-exec", llvm::ThreadLocalMode::LocalExec),
];

const PRE_THIN_LTO_BC_EXT: &str = "pre-thin-lto.bc";

pub fn llvm_err(handler: &errors::Handler, msg: String) -> FatalError {
    match llvm::last_error() {
        Some(err) => handler.fatal(&format!("{}: {}", msg, err)),
        None => handler.fatal(&msg),
    }
}

pub fn write_output_file(
        handler: &errors::Handler,
        target: &'ll llvm::TargetMachine,
        pm: &llvm::PassManager<'ll>,
        m: &'ll llvm::Module,
        output: &Path,
        file_type: llvm::FileType) -> Result<(), FatalError> {
    unsafe {
        let output_c = path2cstr(output);
        let result = llvm::LLVMRustWriteOutputFile(
                target, pm, m, output_c.as_ptr(), file_type);
        if result.into_result().is_err() {
            let msg = format!("could not write output to {}", output.display());
            Err(llvm_err(handler, msg))
        } else {
            Ok(())
        }
    }
}

fn get_llvm_opt_level(optimize: config::OptLevel) -> llvm::CodeGenOptLevel {
    match optimize {
      config::OptLevel::No => llvm::CodeGenOptLevel::None,
      config::OptLevel::Less => llvm::CodeGenOptLevel::Less,
      config::OptLevel::Default => llvm::CodeGenOptLevel::Default,
      config::OptLevel::Aggressive => llvm::CodeGenOptLevel::Aggressive,
      _ => llvm::CodeGenOptLevel::Default,
    }
}

fn get_llvm_opt_size(optimize: config::OptLevel) -> llvm::CodeGenOptSize {
    match optimize {
      config::OptLevel::Size => llvm::CodeGenOptSizeDefault,
      config::OptLevel::SizeMin => llvm::CodeGenOptSizeAggressive,
      _ => llvm::CodeGenOptSizeNone,
    }
}

pub fn create_target_machine(
    sess: &Session,
    find_features: bool,
) -> &'static mut llvm::TargetMachine {
    target_machine_factory(sess, find_features)().unwrap_or_else(|err| {
        llvm_err(sess.diagnostic(), err).raise()
    })
}

// If find_features is true this won't access `sess.crate_types` by assuming
// that `is_pie_binary` is false. When we discover LLVM target features
// `sess.crate_types` is uninitialized so we cannot access it.
pub fn target_machine_factory(sess: &Session, find_features: bool)
    -> Arc<dyn Fn() -> Result<&'static mut llvm::TargetMachine, String> + Send + Sync>
{
    let reloc_model = get_reloc_model(sess);

    let opt_level = get_llvm_opt_level(sess.opts.optimize);
    let use_softfp = sess.opts.cg.soft_float;

    let ffunction_sections = sess.target.target.options.function_sections;
    let fdata_sections = ffunction_sections;

    let code_model_arg = sess.opts.cg.code_model.as_ref().or(
        sess.target.target.options.code_model.as_ref(),
    );

    let code_model = match code_model_arg {
        Some(s) => {
            match CODE_GEN_MODEL_ARGS.iter().find(|arg| arg.0 == s) {
                Some(x) => x.1,
                _ => {
                    sess.err(&format!("{:?} is not a valid code model",
                                      code_model_arg));
                    sess.abort_if_errors();
                    bug!();
                }
            }
        }
        None => llvm::CodeModel::None,
    };

    let features = attributes::llvm_target_features(sess).collect::<Vec<_>>();
    let mut singlethread = sess.target.target.options.singlethread;

    // On the wasm target once the `atomics` feature is enabled that means that
    // we're no longer single-threaded, or otherwise we don't want LLVM to
    // lower atomic operations to single-threaded operations.
    if singlethread &&
        sess.target.target.llvm_target.contains("wasm32") &&
        features.iter().any(|s| *s == "+atomics")
    {
        singlethread = false;
    }

    let triple = SmallCStr::new(&sess.target.target.llvm_target);
    let cpu = SmallCStr::new(llvm_util::target_cpu(sess));
    let features = features.join(",");
    let features = CString::new(features).unwrap();
    let is_pie_binary = !find_features && is_pie_binary(sess);
    let trap_unreachable = sess.target.target.options.trap_unreachable;

    let asm_comments = sess.asm_comments();

    Arc::new(move || {
        let tm = unsafe {
            llvm::LLVMRustCreateTargetMachine(
                triple.as_ptr(), cpu.as_ptr(), features.as_ptr(),
                code_model,
                reloc_model,
                opt_level,
                use_softfp,
                is_pie_binary,
                ffunction_sections,
                fdata_sections,
                trap_unreachable,
                singlethread,
                asm_comments,
            )
        };

        tm.ok_or_else(|| {
            format!("Could not create LLVM TargetMachine for triple: {}",
                    triple.to_str().unwrap())
        })
    })
}

/// Module-specific configuration for `optimize_and_codegen`.
pub struct ModuleConfig {
    /// Names of additional optimization passes to run.
    passes: Vec<String>,
    /// Some(level) to optimize at a certain level, or None to run
    /// absolutely no optimizations (used for the metadata module).
    pub opt_level: Option<llvm::CodeGenOptLevel>,

    /// Some(level) to optimize binary size, or None to not affect program size.
    opt_size: Option<llvm::CodeGenOptSize>,

    pgo_gen: Option<String>,
    pgo_use: String,

    // Flags indicating which outputs to produce.
    pub emit_pre_thin_lto_bc: bool,
    emit_no_opt_bc: bool,
    emit_bc: bool,
    emit_bc_compressed: bool,
    emit_lto_bc: bool,
    emit_ir: bool,
    emit_asm: bool,
    emit_obj: bool,
    // Miscellaneous flags.  These are mostly copied from command-line
    // options.
    pub verify_llvm_ir: bool,
    no_prepopulate_passes: bool,
    no_builtins: bool,
    time_passes: bool,
    vectorize_loop: bool,
    vectorize_slp: bool,
    merge_functions: bool,
    inline_threshold: Option<usize>,
    // Instead of creating an object file by doing LLVM codegen, just
    // make the object file bitcode. Provides easy compatibility with
    // emscripten's ecc compiler, when used as the linker.
    obj_is_bitcode: bool,
    no_integrated_as: bool,
    embed_bitcode: bool,
    embed_bitcode_marker: bool,
}

impl ModuleConfig {
    fn new(passes: Vec<String>) -> ModuleConfig {
        ModuleConfig {
            passes,
            opt_level: None,
            opt_size: None,

            pgo_gen: None,
            pgo_use: String::new(),

            emit_no_opt_bc: false,
            emit_pre_thin_lto_bc: false,
            emit_bc: false,
            emit_bc_compressed: false,
            emit_lto_bc: false,
            emit_ir: false,
            emit_asm: false,
            emit_obj: false,
            obj_is_bitcode: false,
            embed_bitcode: false,
            embed_bitcode_marker: false,
            no_integrated_as: false,

            verify_llvm_ir: false,
            no_prepopulate_passes: false,
            no_builtins: false,
            time_passes: false,
            vectorize_loop: false,
            vectorize_slp: false,
            merge_functions: false,
            inline_threshold: None
        }
    }

    fn set_flags(&mut self, sess: &Session, no_builtins: bool) {
        self.verify_llvm_ir = sess.verify_llvm_ir();
        self.no_prepopulate_passes = sess.opts.cg.no_prepopulate_passes;
        self.no_builtins = no_builtins || sess.target.target.options.no_builtins;
        self.time_passes = sess.time_passes();
        self.inline_threshold = sess.opts.cg.inline_threshold;
        self.obj_is_bitcode = sess.target.target.options.obj_is_bitcode ||
                              sess.opts.debugging_opts.cross_lang_lto.enabled();
        let embed_bitcode = sess.target.target.options.embed_bitcode ||
                            sess.opts.debugging_opts.embed_bitcode;
        if embed_bitcode {
            match sess.opts.optimize {
                config::OptLevel::No |
                config::OptLevel::Less => {
                    self.embed_bitcode_marker = embed_bitcode;
                }
                _ => self.embed_bitcode = embed_bitcode,
            }
        }

        // Copy what clang does by turning on loop vectorization at O2 and
        // slp vectorization at O3. Otherwise configure other optimization aspects
        // of this pass manager builder.
        // Turn off vectorization for emscripten, as it's not very well supported.
        self.vectorize_loop = !sess.opts.cg.no_vectorize_loops &&
                             (sess.opts.optimize == config::OptLevel::Default ||
                              sess.opts.optimize == config::OptLevel::Aggressive) &&
                             !sess.target.target.options.is_like_emscripten;

        self.vectorize_slp = !sess.opts.cg.no_vectorize_slp &&
                            sess.opts.optimize == config::OptLevel::Aggressive &&
                            !sess.target.target.options.is_like_emscripten;

        self.merge_functions = sess.opts.optimize == config::OptLevel::Default ||
                               sess.opts.optimize == config::OptLevel::Aggressive;
    }
}

/// Assembler name and command used by codegen when no_integrated_as is enabled
struct AssemblerCommand {
    name: PathBuf,
    cmd: Command,
}

/// Additional resources used by optimize_and_codegen (not module specific)
#[derive(Clone)]
pub struct CodegenContext {
    // Resources needed when running LTO
    pub time_passes: bool,
    pub lto: Lto,
    pub no_landing_pads: bool,
    pub save_temps: bool,
    pub fewer_names: bool,
    pub exported_symbols: Option<Arc<ExportedSymbols>>,
    pub opts: Arc<config::Options>,
    pub crate_types: Vec<config::CrateType>,
    pub each_linked_rlib_for_lto: Vec<(CrateNum, PathBuf)>,
    output_filenames: Arc<OutputFilenames>,
    regular_module_config: Arc<ModuleConfig>,
    metadata_module_config: Arc<ModuleConfig>,
    allocator_module_config: Arc<ModuleConfig>,
    pub tm_factory: Arc<dyn Fn() -> Result<&'static mut llvm::TargetMachine, String> + Send + Sync>,
    pub msvc_imps_needed: bool,
    pub target_pointer_width: String,
    debuginfo: config::DebugInfo,

    // Number of cgus excluding the allocator/metadata modules
    pub total_cgus: usize,
    // Handler to use for diagnostics produced during codegen.
    pub diag_emitter: SharedEmitter,
    // LLVM passes added by plugins.
    pub plugin_passes: Vec<String>,
    // LLVM optimizations for which we want to print remarks.
    pub remark: Passes,
    // Worker thread number
    pub worker: usize,
    // The incremental compilation session directory, or None if we are not
    // compiling incrementally
    pub incr_comp_session_dir: Option<PathBuf>,
    // Channel back to the main control thread to send messages to
    coordinator_send: Sender<Box<dyn Any + Send>>,
    // A reference to the TimeGraph so we can register timings. None means that
    // measuring is disabled.
    time_graph: Option<TimeGraph>,
    // The assembler command if no_integrated_as option is enabled, None otherwise
    assembler_cmd: Option<Arc<AssemblerCommand>>,
}

impl CodegenContext {
    pub fn create_diag_handler(&self) -> Handler {
        Handler::with_emitter(true, false, Box::new(self.diag_emitter.clone()))
    }

    pub(crate) fn config(&self, kind: ModuleKind) -> &ModuleConfig {
        match kind {
            ModuleKind::Regular => &self.regular_module_config,
            ModuleKind::Metadata => &self.metadata_module_config,
            ModuleKind::Allocator => &self.allocator_module_config,
        }
    }

    pub(crate) fn save_temp_bitcode(&self, module: &ModuleCodegen, name: &str) {
        if !self.save_temps {
            return
        }
        unsafe {
            let ext = format!("{}.bc", name);
            let cgu = Some(&module.name[..]);
            let path = self.output_filenames.temp_path_ext(&ext, cgu);
            let cstr = path2cstr(&path);
            let llmod = module.module_llvm.llmod();
            llvm::LLVMWriteBitcodeToFile(llmod, cstr.as_ptr());
        }
    }
}

pub struct DiagnosticHandlers<'a> {
    data: *mut (&'a CodegenContext, &'a Handler),
    llcx: &'a llvm::Context,
}

impl<'a> DiagnosticHandlers<'a> {
    pub fn new(cgcx: &'a CodegenContext,
               handler: &'a Handler,
               llcx: &'a llvm::Context) -> Self {
        let data = Box::into_raw(Box::new((cgcx, handler)));
        unsafe {
            llvm::LLVMRustSetInlineAsmDiagnosticHandler(llcx, inline_asm_handler, data as *mut _);
            llvm::LLVMContextSetDiagnosticHandler(llcx, diagnostic_handler, data as *mut _);
        }
        DiagnosticHandlers { data, llcx }
    }
}

impl<'a> Drop for DiagnosticHandlers<'a> {
    fn drop(&mut self) {
        use std::ptr::null_mut;
        unsafe {
            llvm::LLVMRustSetInlineAsmDiagnosticHandler(self.llcx, inline_asm_handler, null_mut());
            llvm::LLVMContextSetDiagnosticHandler(self.llcx, diagnostic_handler, null_mut());
            drop(Box::from_raw(self.data));
        }
    }
}

unsafe extern "C" fn report_inline_asm<'a, 'b>(cgcx: &'a CodegenContext,
                                               msg: &'b str,
                                               cookie: c_uint) {
    cgcx.diag_emitter.inline_asm_error(cookie as u32, msg.to_string());
}

unsafe extern "C" fn inline_asm_handler(diag: &SMDiagnostic,
                                        user: *const c_void,
                                        cookie: c_uint) {
    if user.is_null() {
        return
    }
    let (cgcx, _) = *(user as *const (&CodegenContext, &Handler));

    let msg = llvm::build_string(|s| llvm::LLVMRustWriteSMDiagnosticToString(diag, s))
        .expect("non-UTF8 SMDiagnostic");

    report_inline_asm(cgcx, &msg, cookie);
}

unsafe extern "C" fn diagnostic_handler(info: &DiagnosticInfo, user: *mut c_void) {
    if user.is_null() {
        return
    }
    let (cgcx, diag_handler) = *(user as *const (&CodegenContext, &Handler));

    match llvm::diagnostic::Diagnostic::unpack(info) {
        llvm::diagnostic::InlineAsm(inline) => {
            report_inline_asm(cgcx,
                              &llvm::twine_to_string(inline.message),
                              inline.cookie);
        }

        llvm::diagnostic::Optimization(opt) => {
            let enabled = match cgcx.remark {
                Passes::All => true,
                Passes::Some(ref v) => v.iter().any(|s| *s == opt.pass_name),
            };

            if enabled {
                diag_handler.note_without_error(&format!("optimization {} for {} at {}:{}:{}: {}",
                                                opt.kind.describe(),
                                                opt.pass_name,
                                                opt.filename,
                                                opt.line,
                                                opt.column,
                                                opt.message));
            }
        }
        llvm::diagnostic::PGO(diagnostic_ref) |
        llvm::diagnostic::Linker(diagnostic_ref) => {
            let msg = llvm::build_string(|s| {
                llvm::LLVMRustWriteDiagnosticInfoToString(diagnostic_ref, s)
            }).expect("non-UTF8 diagnostic");
            diag_handler.warn(&msg);
        }
        llvm::diagnostic::UnknownDiagnostic(..) => {},
    }
}

// Unsafe due to LLVM calls.
unsafe fn optimize(cgcx: &CodegenContext,
                   diag_handler: &Handler,
                   module: &ModuleCodegen,
                   config: &ModuleConfig,
                   timeline: &mut Timeline)
    -> Result<(), FatalError>
{
    let llmod = module.module_llvm.llmod();
    let llcx = &*module.module_llvm.llcx;
    let tm = &*module.module_llvm.tm;
    let _handlers = DiagnosticHandlers::new(cgcx, diag_handler, llcx);

    let module_name = module.name.clone();
    let module_name = Some(&module_name[..]);

    if config.emit_no_opt_bc {
        let out = cgcx.output_filenames.temp_path_ext("no-opt.bc", module_name);
        let out = path2cstr(&out);
        llvm::LLVMWriteBitcodeToFile(llmod, out.as_ptr());
    }

    if config.opt_level.is_some() {
        // Create the two optimizing pass managers. These mirror what clang
        // does, and are by populated by LLVM's default PassManagerBuilder.
        // Each manager has a different set of passes, but they also share
        // some common passes.
        let fpm = llvm::LLVMCreateFunctionPassManagerForModule(llmod);
        let mpm = llvm::LLVMCreatePassManager();

        {
            // If we're verifying or linting, add them to the function pass
            // manager.
            let addpass = |pass_name: &str| {
                let pass_name = SmallCStr::new(pass_name);
                let pass = match llvm::LLVMRustFindAndCreatePass(pass_name.as_ptr()) {
                    Some(pass) => pass,
                    None => return false,
                };
                let pass_manager = match llvm::LLVMRustPassKind(pass) {
                    llvm::PassKind::Function => &*fpm,
                    llvm::PassKind::Module => &*mpm,
                    llvm::PassKind::Other => {
                        diag_handler.err("Encountered LLVM pass kind we can't handle");
                        return true
                    },
                };
                llvm::LLVMRustAddPass(pass_manager, pass);
                true
            };

            if config.verify_llvm_ir { assert!(addpass("verify")); }

            // Some options cause LLVM bitcode to be emitted, which uses ThinLTOBuffers, so we need
            // to make sure we run LLVM's NameAnonGlobals pass when emitting bitcode; otherwise
            // we'll get errors in LLVM.
            let using_thin_buffers = llvm::LLVMRustThinLTOAvailable() && (config.emit_bc
                || config.obj_is_bitcode || config.emit_bc_compressed || config.embed_bitcode);
            let mut have_name_anon_globals_pass = false;
            if !config.no_prepopulate_passes {
                llvm::LLVMRustAddAnalysisPasses(tm, fpm, llmod);
                llvm::LLVMRustAddAnalysisPasses(tm, mpm, llmod);
                let opt_level = config.opt_level.unwrap_or(llvm::CodeGenOptLevel::None);
                let prepare_for_thin_lto = cgcx.lto == Lto::Thin || cgcx.lto == Lto::ThinLocal ||
                    (cgcx.lto != Lto::Fat && cgcx.opts.debugging_opts.cross_lang_lto.enabled());
                have_name_anon_globals_pass = have_name_anon_globals_pass || prepare_for_thin_lto;
                if using_thin_buffers && !prepare_for_thin_lto {
                    assert!(addpass("name-anon-globals"));
                    have_name_anon_globals_pass = true;
                }
                with_llvm_pmb(llmod, &config, opt_level, prepare_for_thin_lto, &mut |b| {
                    llvm::LLVMPassManagerBuilderPopulateFunctionPassManager(b, fpm);
                    llvm::LLVMPassManagerBuilderPopulateModulePassManager(b, mpm);
                })
            }

            for pass in &config.passes {
                if !addpass(pass) {
                    diag_handler.warn(&format!("unknown pass `{}`, ignoring",
                                            pass));
                }
                if pass == "name-anon-globals" {
                    have_name_anon_globals_pass = true;
                }
            }

            for pass in &cgcx.plugin_passes {
                if !addpass(pass) {
                    diag_handler.err(&format!("a plugin asked for LLVM pass \
                                            `{}` but LLVM does not \
                                            recognize it", pass));
                }
                if pass == "name-anon-globals" {
                    have_name_anon_globals_pass = true;
                }
            }

            if using_thin_buffers && !have_name_anon_globals_pass {
                // As described above, this will probably cause an error in LLVM
                if config.no_prepopulate_passes {
                    diag_handler.err("The current compilation is going to use thin LTO buffers \
                                     without running LLVM's NameAnonGlobals pass. \
                                     This will likely cause errors in LLVM. Consider adding \
                                     -C passes=name-anon-globals to the compiler command line.");
                } else {
                    bug!("We are using thin LTO buffers without running the NameAnonGlobals pass. \
                         This will likely cause errors in LLVM and should never happen.");
                }
            }
        }

        diag_handler.abort_if_errors();

        // Finally, run the actual optimization passes
        time_ext(config.time_passes,
                 None,
                 &format!("llvm function passes [{}]", module_name.unwrap()),
                 || {
            llvm::LLVMRustRunFunctionPassManager(fpm, llmod)
        });
        timeline.record("fpm");
        time_ext(config.time_passes,
                 None,
                 &format!("llvm module passes [{}]", module_name.unwrap()),
                 || {
            llvm::LLVMRunPassManager(mpm, llmod)
        });

        // Deallocate managers that we're now done with
        llvm::LLVMDisposePassManager(fpm);
        llvm::LLVMDisposePassManager(mpm);
    }
    Ok(())
}

fn generate_lto_work(cgcx: &CodegenContext,
                     modules: Vec<ModuleCodegen>,
                     import_only_modules: Vec<(SerializedModule, WorkProduct)>)
    -> Vec<(WorkItem, u64)>
{
    let mut timeline = cgcx.time_graph.as_ref().map(|tg| {
        tg.start(CODEGEN_WORKER_TIMELINE,
                 CODEGEN_WORK_PACKAGE_KIND,
                 "generate lto")
    }).unwrap_or(Timeline::noop());
    let (lto_modules, copy_jobs) = lto::run(cgcx, modules, import_only_modules, &mut timeline)
        .unwrap_or_else(|e| e.raise());

    let lto_modules = lto_modules.into_iter().map(|module| {
        let cost = module.cost();
        (WorkItem::LTO(module), cost)
    });

    let copy_jobs = copy_jobs.into_iter().map(|wp| {
        (WorkItem::CopyPostLtoArtifacts(CachedModuleCodegen {
            name: wp.cgu_name.clone(),
            source: wp,
        }), 0)
    });

    lto_modules.chain(copy_jobs).collect()
}

unsafe fn codegen(cgcx: &CodegenContext,
                  diag_handler: &Handler,
                  module: ModuleCodegen,
                  config: &ModuleConfig,
                  timeline: &mut Timeline)
    -> Result<CompiledModule, FatalError>
{
    timeline.record("codegen");
    {
        let llmod = module.module_llvm.llmod();
        let llcx = &*module.module_llvm.llcx;
        let tm = &*module.module_llvm.tm;
        let module_name = module.name.clone();
        let module_name = Some(&module_name[..]);
        let handlers = DiagnosticHandlers::new(cgcx, diag_handler, llcx);

        if cgcx.msvc_imps_needed {
            create_msvc_imps(cgcx, llcx, llmod);
        }

        // A codegen-specific pass manager is used to generate object
        // files for an LLVM module.
        //
        // Apparently each of these pass managers is a one-shot kind of
        // thing, so we create a new one for each type of output. The
        // pass manager passed to the closure should be ensured to not
        // escape the closure itself, and the manager should only be
        // used once.
        unsafe fn with_codegen<'ll, F, R>(tm: &'ll llvm::TargetMachine,
                                    llmod: &'ll llvm::Module,
                                    no_builtins: bool,
                                    f: F) -> R
            where F: FnOnce(&'ll mut PassManager<'ll>) -> R,
        {
            let cpm = llvm::LLVMCreatePassManager();
            llvm::LLVMRustAddAnalysisPasses(tm, cpm, llmod);
            llvm::LLVMRustAddLibraryInfo(cpm, llmod, no_builtins);
            f(cpm)
        }

        // If we don't have the integrated assembler, then we need to emit asm
        // from LLVM and use `gcc` to create the object file.
        let asm_to_obj = config.emit_obj && config.no_integrated_as;

        // Change what we write and cleanup based on whether obj files are
        // just llvm bitcode. In that case write bitcode, and possibly
        // delete the bitcode if it wasn't requested. Don't generate the
        // machine code, instead copy the .o file from the .bc
        let write_bc = config.emit_bc || config.obj_is_bitcode;
        let rm_bc = !config.emit_bc && config.obj_is_bitcode;
        let write_obj = config.emit_obj && !config.obj_is_bitcode && !asm_to_obj;
        let copy_bc_to_obj = config.emit_obj && config.obj_is_bitcode;

        let bc_out = cgcx.output_filenames.temp_path(OutputType::Bitcode, module_name);
        let obj_out = cgcx.output_filenames.temp_path(OutputType::Object, module_name);


        if write_bc || config.emit_bc_compressed || config.embed_bitcode {
            let thin;
            let old;
            let data = if llvm::LLVMRustThinLTOAvailable() {
                thin = ThinBuffer::new(llmod);
                thin.data()
            } else {
                old = ModuleBuffer::new(llmod);
                old.data()
            };
            timeline.record("make-bc");

            if write_bc {
                if let Err(e) = fs::write(&bc_out, data) {
                    diag_handler.err(&format!("failed to write bytecode: {}", e));
                }
                timeline.record("write-bc");
            }

            if config.embed_bitcode {
                embed_bitcode(cgcx, llcx, llmod, Some(data));
                timeline.record("embed-bc");
            }

            if config.emit_bc_compressed {
                let dst = bc_out.with_extension(RLIB_BYTECODE_EXTENSION);
                let data = bytecode::encode(&module.name, data);
                if let Err(e) = fs::write(&dst, data) {
                    diag_handler.err(&format!("failed to write bytecode: {}", e));
                }
                timeline.record("compress-bc");
            }
        } else if config.embed_bitcode_marker {
            embed_bitcode(cgcx, llcx, llmod, None);
        }

        time_ext(config.time_passes, None, &format!("codegen passes [{}]", module_name.unwrap()),
            || -> Result<(), FatalError> {
            if config.emit_ir {
                let out = cgcx.output_filenames.temp_path(OutputType::LlvmAssembly, module_name);
                let out = path2cstr(&out);

                extern "C" fn demangle_callback(input_ptr: *const c_char,
                                                input_len: size_t,
                                                output_ptr: *mut c_char,
                                                output_len: size_t) -> size_t {
                    let input = unsafe {
                        slice::from_raw_parts(input_ptr as *const u8, input_len as usize)
                    };

                    let input = match str::from_utf8(input) {
                        Ok(s) => s,
                        Err(_) => return 0,
                    };

                    let output = unsafe {
                        slice::from_raw_parts_mut(output_ptr as *mut u8, output_len as usize)
                    };
                    let mut cursor = io::Cursor::new(output);

                    let demangled = match rustc_demangle::try_demangle(input) {
                        Ok(d) => d,
                        Err(_) => return 0,
                    };

                    if let Err(_) = write!(cursor, "{:#}", demangled) {
                        // Possible only if provided buffer is not big enough
                        return 0;
                    }

                    cursor.position() as size_t
                }

                with_codegen(tm, llmod, config.no_builtins, |cpm| {
                    llvm::LLVMRustPrintModule(cpm, llmod, out.as_ptr(), demangle_callback);
                    llvm::LLVMDisposePassManager(cpm);
                });
                timeline.record("ir");
            }

            if config.emit_asm || asm_to_obj {
                let path = cgcx.output_filenames.temp_path(OutputType::Assembly, module_name);

                // We can't use the same module for asm and binary output, because that triggers
                // various errors like invalid IR or broken binaries, so we might have to clone the
                // module to produce the asm output
                let llmod = if config.emit_obj {
                    llvm::LLVMCloneModule(llmod)
                } else {
                    llmod
                };
                with_codegen(tm, llmod, config.no_builtins, |cpm| {
                    write_output_file(diag_handler, tm, cpm, llmod, &path,
                                    llvm::FileType::AssemblyFile)
                })?;
                timeline.record("asm");
            }

            if write_obj {
                with_codegen(tm, llmod, config.no_builtins, |cpm| {
                    write_output_file(diag_handler, tm, cpm, llmod, &obj_out,
                                    llvm::FileType::ObjectFile)
                })?;
                timeline.record("obj");
            } else if asm_to_obj {
                let assembly = cgcx.output_filenames.temp_path(OutputType::Assembly, module_name);
                run_assembler(cgcx, diag_handler, &assembly, &obj_out);
                timeline.record("asm_to_obj");

                if !config.emit_asm && !cgcx.save_temps {
                    drop(fs::remove_file(&assembly));
                }
            }

            Ok(())
        })?;

        if copy_bc_to_obj {
            debug!("copying bitcode {:?} to obj {:?}", bc_out, obj_out);
            if let Err(e) = link_or_copy(&bc_out, &obj_out) {
                diag_handler.err(&format!("failed to copy bitcode to object file: {}", e));
            }
        }

        if rm_bc {
            debug!("removing_bitcode {:?}", bc_out);
            if let Err(e) = fs::remove_file(&bc_out) {
                diag_handler.err(&format!("failed to remove bitcode: {}", e));
            }
        }

        drop(handlers);
    }
    Ok(module.into_compiled_module(config.emit_obj,
                                   config.emit_bc,
                                   config.emit_bc_compressed,
                                   &cgcx.output_filenames))
}

/// Embed the bitcode of an LLVM module in the LLVM module itself.
///
/// This is done primarily for iOS where it appears to be standard to compile C
/// code at least with `-fembed-bitcode` which creates two sections in the
/// executable:
///
/// * __LLVM,__bitcode
/// * __LLVM,__cmdline
///
/// It appears *both* of these sections are necessary to get the linker to
/// recognize what's going on. For us though we just always throw in an empty
/// cmdline section.
///
/// Furthermore debug/O1 builds don't actually embed bitcode but rather just
/// embed an empty section.
///
/// Basically all of this is us attempting to follow in the footsteps of clang
/// on iOS. See #35968 for lots more info.
unsafe fn embed_bitcode(cgcx: &CodegenContext,
                        llcx: &llvm::Context,
                        llmod: &llvm::Module,
                        bitcode: Option<&[u8]>) {
    let llconst = C_bytes_in_context(llcx, bitcode.unwrap_or(&[]));
    let llglobal = llvm::LLVMAddGlobal(
        llmod,
        val_ty(llconst),
        "rustc.embedded.module\0".as_ptr() as *const _,
    );
    llvm::LLVMSetInitializer(llglobal, llconst);

    let is_apple = cgcx.opts.target_triple.triple().contains("-ios") ||
                   cgcx.opts.target_triple.triple().contains("-darwin");

    let section = if is_apple {
        "__LLVM,__bitcode\0"
    } else {
        ".llvmbc\0"
    };
    llvm::LLVMSetSection(llglobal, section.as_ptr() as *const _);
    llvm::LLVMRustSetLinkage(llglobal, llvm::Linkage::PrivateLinkage);
    llvm::LLVMSetGlobalConstant(llglobal, llvm::True);

    let llconst = C_bytes_in_context(llcx, &[]);
    let llglobal = llvm::LLVMAddGlobal(
        llmod,
        val_ty(llconst),
        "rustc.embedded.cmdline\0".as_ptr() as *const _,
    );
    llvm::LLVMSetInitializer(llglobal, llconst);
    let section = if  is_apple {
        "__LLVM,__cmdline\0"
    } else {
        ".llvmcmd\0"
    };
    llvm::LLVMSetSection(llglobal, section.as_ptr() as *const _);
    llvm::LLVMRustSetLinkage(llglobal, llvm::Linkage::PrivateLinkage);
}

pub(crate) struct CompiledModules {
    pub modules: Vec<CompiledModule>,
    pub metadata_module: CompiledModule,
    pub allocator_module: Option<CompiledModule>,
}

fn need_crate_bitcode_for_rlib(sess: &Session) -> bool {
    sess.crate_types.borrow().contains(&config::CrateType::Rlib) &&
    sess.opts.output_types.contains_key(&OutputType::Exe)
}

fn need_pre_thin_lto_bitcode_for_incr_comp(sess: &Session) -> bool {
    if sess.opts.incremental.is_none() {
        return false
    }

    match sess.lto() {
        Lto::Fat |
        Lto::No => false,
        Lto::Thin |
        Lto::ThinLocal => true,
    }
}

pub fn start_async_codegen(tcx: TyCtxt,
                               time_graph: Option<TimeGraph>,
                               metadata: EncodedMetadata,
                               coordinator_receive: Receiver<Box<dyn Any + Send>>,
                               total_cgus: usize)
                               -> OngoingCodegen {
    let sess = tcx.sess;
    let crate_name = tcx.crate_name(LOCAL_CRATE);
    let crate_hash = tcx.crate_hash(LOCAL_CRATE);
    let no_builtins = attr::contains_name(&tcx.hir.krate().attrs, "no_builtins");
    let subsystem = attr::first_attr_value_str_by_name(&tcx.hir.krate().attrs,
                                                       "windows_subsystem");
    let windows_subsystem = subsystem.map(|subsystem| {
        if subsystem != "windows" && subsystem != "console" {
            tcx.sess.fatal(&format!("invalid windows subsystem `{}`, only \
                                     `windows` and `console` are allowed",
                                    subsystem));
        }
        subsystem.to_string()
    });

    let linker_info = LinkerInfo::new(tcx);
    let crate_info = CrateInfo::new(tcx);

    // Figure out what we actually need to build.
    let mut modules_config = ModuleConfig::new(sess.opts.cg.passes.clone());
    let mut metadata_config = ModuleConfig::new(vec![]);
    let mut allocator_config = ModuleConfig::new(vec![]);

    if let Some(ref sanitizer) = sess.opts.debugging_opts.sanitizer {
        match *sanitizer {
            Sanitizer::Address => {
                modules_config.passes.push("asan".to_owned());
                modules_config.passes.push("asan-module".to_owned());
            }
            Sanitizer::Memory => {
                modules_config.passes.push("msan".to_owned())
            }
            Sanitizer::Thread => {
                modules_config.passes.push("tsan".to_owned())
            }
            _ => {}
        }
    }

    if sess.opts.debugging_opts.profile {
        modules_config.passes.push("insert-gcov-profiling".to_owned())
    }

    modules_config.pgo_gen = sess.opts.debugging_opts.pgo_gen.clone();
    modules_config.pgo_use = sess.opts.debugging_opts.pgo_use.clone();

    modules_config.opt_level = Some(get_llvm_opt_level(sess.opts.optimize));
    modules_config.opt_size = Some(get_llvm_opt_size(sess.opts.optimize));

    // Save all versions of the bytecode if we're saving our temporaries.
    if sess.opts.cg.save_temps {
        modules_config.emit_no_opt_bc = true;
        modules_config.emit_pre_thin_lto_bc = true;
        modules_config.emit_bc = true;
        modules_config.emit_lto_bc = true;
        metadata_config.emit_bc = true;
        allocator_config.emit_bc = true;
    }

    // Emit compressed bitcode files for the crate if we're emitting an rlib.
    // Whenever an rlib is created, the bitcode is inserted into the archive in
    // order to allow LTO against it.
    if need_crate_bitcode_for_rlib(sess) {
        modules_config.emit_bc_compressed = true;
        allocator_config.emit_bc_compressed = true;
    }

    modules_config.emit_pre_thin_lto_bc =
        need_pre_thin_lto_bitcode_for_incr_comp(sess);

    modules_config.no_integrated_as = tcx.sess.opts.cg.no_integrated_as ||
        tcx.sess.target.target.options.no_integrated_as;

    for output_type in sess.opts.output_types.keys() {
        match *output_type {
            OutputType::Bitcode => { modules_config.emit_bc = true; }
            OutputType::LlvmAssembly => { modules_config.emit_ir = true; }
            OutputType::Assembly => {
                modules_config.emit_asm = true;
                // If we're not using the LLVM assembler, this function
                // could be invoked specially with output_type_assembly, so
                // in this case we still want the metadata object file.
                if !sess.opts.output_types.contains_key(&OutputType::Assembly) {
                    metadata_config.emit_obj = true;
                    allocator_config.emit_obj = true;
                }
            }
            OutputType::Object => { modules_config.emit_obj = true; }
            OutputType::Metadata => { metadata_config.emit_obj = true; }
            OutputType::Exe => {
                modules_config.emit_obj = true;
                metadata_config.emit_obj = true;
                allocator_config.emit_obj = true;
            },
            OutputType::Mir => {}
            OutputType::DepInfo => {}
        }
    }

    modules_config.set_flags(sess, no_builtins);
    metadata_config.set_flags(sess, no_builtins);
    allocator_config.set_flags(sess, no_builtins);

    // Exclude metadata and allocator modules from time_passes output, since
    // they throw off the "LLVM passes" measurement.
    metadata_config.time_passes = false;
    allocator_config.time_passes = false;

    let (shared_emitter, shared_emitter_main) = SharedEmitter::new();
    let (codegen_worker_send, codegen_worker_receive) = channel();

    let coordinator_thread = start_executing_work(tcx,
                                                  &crate_info,
                                                  shared_emitter,
                                                  codegen_worker_send,
                                                  coordinator_receive,
                                                  total_cgus,
                                                  sess.jobserver.clone(),
                                                  time_graph.clone(),
                                                  Arc::new(modules_config),
                                                  Arc::new(metadata_config),
                                                  Arc::new(allocator_config));

    OngoingCodegen {
        crate_name,
        crate_hash,
        metadata,
        windows_subsystem,
        linker_info,
        crate_info,

        time_graph,
        coordinator_send: tcx.tx_to_llvm_workers.lock().clone(),
        codegen_worker_receive,
        shared_emitter_main,
        future: coordinator_thread,
        output_filenames: tcx.output_filenames(LOCAL_CRATE),
    }
}

fn copy_all_cgu_workproducts_to_incr_comp_cache_dir(
    sess: &Session,
    compiled_modules: &CompiledModules,
) -> FxHashMap<WorkProductId, WorkProduct> {
    let mut work_products = FxHashMap::default();

    if sess.opts.incremental.is_none() {
        return work_products;
    }

    for module in compiled_modules.modules.iter().filter(|m| m.kind == ModuleKind::Regular) {
        let mut files = vec![];

        if let Some(ref path) = module.object {
            files.push((WorkProductFileKind::Object, path.clone()));
        }
        if let Some(ref path) = module.bytecode {
            files.push((WorkProductFileKind::Bytecode, path.clone()));
        }
        if let Some(ref path) = module.bytecode_compressed {
            files.push((WorkProductFileKind::BytecodeCompressed, path.clone()));
        }

        if let Some((id, product)) =
                copy_cgu_workproducts_to_incr_comp_cache_dir(sess, &module.name, &files) {
            work_products.insert(id, product);
        }
    }

    work_products
}

fn produce_final_output_artifacts(sess: &Session,
                                  compiled_modules: &CompiledModules,
                                  crate_output: &OutputFilenames) {
    let mut user_wants_bitcode = false;
    let mut user_wants_objects = false;

    // Produce final compile outputs.
    let copy_gracefully = |from: &Path, to: &Path| {
        if let Err(e) = fs::copy(from, to) {
            sess.err(&format!("could not copy {:?} to {:?}: {}", from, to, e));
        }
    };

    let copy_if_one_unit = |output_type: OutputType,
                            keep_numbered: bool| {
        if compiled_modules.modules.len() == 1 {
            // 1) Only one codegen unit.  In this case it's no difficulty
            //    to copy `foo.0.x` to `foo.x`.
            let module_name = Some(&compiled_modules.modules[0].name[..]);
            let path = crate_output.temp_path(output_type, module_name);
            copy_gracefully(&path,
                            &crate_output.path(output_type));
            if !sess.opts.cg.save_temps && !keep_numbered {
                // The user just wants `foo.x`, not `foo.#module-name#.x`.
                remove(sess, &path);
            }
        } else {
            let ext = crate_output.temp_path(output_type, None)
                                  .extension()
                                  .unwrap()
                                  .to_str()
                                  .unwrap()
                                  .to_owned();

            if crate_output.outputs.contains_key(&output_type) {
                // 2) Multiple codegen units, with `--emit foo=some_name`.  We have
                //    no good solution for this case, so warn the user.
                sess.warn(&format!("ignoring emit path because multiple .{} files \
                                    were produced", ext));
            } else if crate_output.single_output_file.is_some() {
                // 3) Multiple codegen units, with `-o some_name`.  We have
                //    no good solution for this case, so warn the user.
                sess.warn(&format!("ignoring -o because multiple .{} files \
                                    were produced", ext));
            } else {
                // 4) Multiple codegen units, but no explicit name.  We
                //    just leave the `foo.0.x` files in place.
                // (We don't have to do any work in this case.)
            }
        }
    };

    // Flag to indicate whether the user explicitly requested bitcode.
    // Otherwise, we produced it only as a temporary output, and will need
    // to get rid of it.
    for output_type in crate_output.outputs.keys() {
        match *output_type {
            OutputType::Bitcode => {
                user_wants_bitcode = true;
                // Copy to .bc, but always keep the .0.bc.  There is a later
                // check to figure out if we should delete .0.bc files, or keep
                // them for making an rlib.
                copy_if_one_unit(OutputType::Bitcode, true);
            }
            OutputType::LlvmAssembly => {
                copy_if_one_unit(OutputType::LlvmAssembly, false);
            }
            OutputType::Assembly => {
                copy_if_one_unit(OutputType::Assembly, false);
            }
            OutputType::Object => {
                user_wants_objects = true;
                copy_if_one_unit(OutputType::Object, true);
            }
            OutputType::Mir |
            OutputType::Metadata |
            OutputType::Exe |
            OutputType::DepInfo => {}
        }
    }

    // Clean up unwanted temporary files.

    // We create the following files by default:
    //  - #crate#.#module-name#.bc
    //  - #crate#.#module-name#.o
    //  - #crate#.crate.metadata.bc
    //  - #crate#.crate.metadata.o
    //  - #crate#.o (linked from crate.##.o)
    //  - #crate#.bc (copied from crate.##.bc)
    // We may create additional files if requested by the user (through
    // `-C save-temps` or `--emit=` flags).

    if !sess.opts.cg.save_temps {
        // Remove the temporary .#module-name#.o objects.  If the user didn't
        // explicitly request bitcode (with --emit=bc), and the bitcode is not
        // needed for building an rlib, then we must remove .#module-name#.bc as
        // well.

        // Specific rules for keeping .#module-name#.bc:
        //  - If the user requested bitcode (`user_wants_bitcode`), and
        //    codegen_units > 1, then keep it.
        //  - If the user requested bitcode but codegen_units == 1, then we
        //    can toss .#module-name#.bc because we copied it to .bc earlier.
        //  - If we're not building an rlib and the user didn't request
        //    bitcode, then delete .#module-name#.bc.
        // If you change how this works, also update back::link::link_rlib,
        // where .#module-name#.bc files are (maybe) deleted after making an
        // rlib.
        let needs_crate_object = crate_output.outputs.contains_key(&OutputType::Exe);

        let keep_numbered_bitcode = user_wants_bitcode && sess.codegen_units() > 1;

        let keep_numbered_objects = needs_crate_object ||
                (user_wants_objects && sess.codegen_units() > 1);

        for module in compiled_modules.modules.iter() {
            if let Some(ref path) = module.object {
                if !keep_numbered_objects {
                    remove(sess, path);
                }
            }

            if let Some(ref path) = module.bytecode {
                if !keep_numbered_bitcode {
                    remove(sess, path);
                }
            }
        }

        if !user_wants_bitcode {
            if let Some(ref path) = compiled_modules.metadata_module.bytecode {
                remove(sess, &path);
            }

            if let Some(ref allocator_module) = compiled_modules.allocator_module {
                if let Some(ref path) = allocator_module.bytecode {
                    remove(sess, path);
                }
            }
        }
    }

    // We leave the following files around by default:
    //  - #crate#.o
    //  - #crate#.crate.metadata.o
    //  - #crate#.bc
    // These are used in linking steps and will be cleaned up afterward.
}

pub(crate) fn dump_incremental_data(_codegen_results: &CodegenResults) {
    // FIXME(mw): This does not work at the moment because the situation has
    //            become more complicated due to incremental LTO. Now a CGU
    //            can have more than two caching states.
    // println!("[incremental] Re-using {} out of {} modules",
    //           codegen_results.modules.iter().filter(|m| m.pre_existing).count(),
    //           codegen_results.modules.len());
}

enum WorkItem {
    /// Optimize a newly codegened, totally unoptimized module.
    Optimize(ModuleCodegen),
    /// Copy the post-LTO artifacts from the incremental cache to the output
    /// directory.
    CopyPostLtoArtifacts(CachedModuleCodegen),
    /// Perform (Thin)LTO on the given module.
    LTO(lto::LtoModuleCodegen),
}

impl WorkItem {
    fn module_kind(&self) -> ModuleKind {
        match *self {
            WorkItem::Optimize(ref m) => m.kind,
            WorkItem::CopyPostLtoArtifacts(_) |
            WorkItem::LTO(_) => ModuleKind::Regular,
        }
    }

    fn name(&self) -> String {
        match *self {
            WorkItem::Optimize(ref m) => format!("optimize: {}", m.name),
            WorkItem::CopyPostLtoArtifacts(ref m) => format!("copy post LTO artifacts: {}", m.name),
            WorkItem::LTO(ref m) => format!("lto: {}", m.name()),
        }
    }
}

enum WorkItemResult {
    Compiled(CompiledModule),
    NeedsLTO(ModuleCodegen),
}

fn execute_work_item(cgcx: &CodegenContext,
                     work_item: WorkItem,
                     timeline: &mut Timeline)
    -> Result<WorkItemResult, FatalError>
{
    let module_config = cgcx.config(work_item.module_kind());

    match work_item {
        WorkItem::Optimize(module) => {
            execute_optimize_work_item(cgcx, module, module_config, timeline)
        }
        WorkItem::CopyPostLtoArtifacts(module) => {
            execute_copy_from_cache_work_item(cgcx, module, module_config, timeline)
        }
        WorkItem::LTO(module) => {
            execute_lto_work_item(cgcx, module, module_config, timeline)
        }
    }
}

fn execute_optimize_work_item(cgcx: &CodegenContext,
                              module: ModuleCodegen,
                              module_config: &ModuleConfig,
                              timeline: &mut Timeline)
    -> Result<WorkItemResult, FatalError>
{
    let diag_handler = cgcx.create_diag_handler();

    unsafe {
        optimize(cgcx, &diag_handler, &module, module_config, timeline)?;
    }

    let linker_does_lto = cgcx.opts.debugging_opts.cross_lang_lto.enabled();

    // After we've done the initial round of optimizations we need to
    // decide whether to synchronously codegen this module or ship it
    // back to the coordinator thread for further LTO processing (which
    // has to wait for all the initial modules to be optimized).
    //
    // Here we dispatch based on the `cgcx.lto` and kind of module we're
    // codegenning...
    let needs_lto = match cgcx.lto {
        Lto::No => false,

        // If the linker does LTO, we don't have to do it. Note that we
        // keep doing full LTO, if it is requested, as not to break the
        // assumption that the output will be a single module.
        Lto::Thin | Lto::ThinLocal if linker_does_lto => false,

        // Here we've got a full crate graph LTO requested. We ignore
        // this, however, if the crate type is only an rlib as there's
        // no full crate graph to process, that'll happen later.
        //
        // This use case currently comes up primarily for targets that
        // require LTO so the request for LTO is always unconditionally
        // passed down to the backend, but we don't actually want to do
        // anything about it yet until we've got a final product.
        Lto::Fat | Lto::Thin => {
            cgcx.crate_types.len() != 1 ||
                cgcx.crate_types[0] != config::CrateType::Rlib
        }

        // When we're automatically doing ThinLTO for multi-codegen-unit
        // builds we don't actually want to LTO the allocator modules if
        // it shows up. This is due to various linker shenanigans that
        // we'll encounter later.
        //
        // Additionally here's where we also factor in the current LLVM
        // version. If it doesn't support ThinLTO we skip this.
        Lto::ThinLocal => {
            module.kind != ModuleKind::Allocator &&
                unsafe { llvm::LLVMRustThinLTOAvailable() }
        }
    };

    // Metadata modules never participate in LTO regardless of the lto
    // settings.
    let needs_lto = needs_lto && module.kind != ModuleKind::Metadata;

    if needs_lto {
        Ok(WorkItemResult::NeedsLTO(module))
    } else {
        let module = unsafe {
            codegen(cgcx, &diag_handler, module, module_config, timeline)?
        };
        Ok(WorkItemResult::Compiled(module))
    }
}

fn execute_copy_from_cache_work_item(cgcx: &CodegenContext,
                                     module: CachedModuleCodegen,
                                     module_config: &ModuleConfig,
                                     _: &mut Timeline)
    -> Result<WorkItemResult, FatalError>
{
    let incr_comp_session_dir = cgcx.incr_comp_session_dir
                                    .as_ref()
                                    .unwrap();
    let mut object = None;
    let mut bytecode = None;
    let mut bytecode_compressed = None;
    for (kind, saved_file) in &module.source.saved_files {
        let obj_out = match kind {
            WorkProductFileKind::Object => {
                let path = cgcx.output_filenames.temp_path(OutputType::Object,
                                                           Some(&module.name));
                object = Some(path.clone());
                path
            }
            WorkProductFileKind::Bytecode => {
                let path = cgcx.output_filenames.temp_path(OutputType::Bitcode,
                                                           Some(&module.name));
                bytecode = Some(path.clone());
                path
            }
            WorkProductFileKind::BytecodeCompressed => {
                let path = cgcx.output_filenames.temp_path(OutputType::Bitcode,
                                                           Some(&module.name))
                    .with_extension(RLIB_BYTECODE_EXTENSION);
                bytecode_compressed = Some(path.clone());
                path
            }
        };
        let source_file = in_incr_comp_dir(&incr_comp_session_dir,
                                           &saved_file);
        debug!("copying pre-existing module `{}` from {:?} to {}",
               module.name,
               source_file,
               obj_out.display());
        match link_or_copy(&source_file, &obj_out) {
            Ok(_) => { }
            Err(err) => {
                let diag_handler = cgcx.create_diag_handler();
                diag_handler.err(&format!("unable to copy {} to {}: {}",
                                          source_file.display(),
                                          obj_out.display(),
                                          err));
            }
        }
    }

    assert_eq!(object.is_some(), module_config.emit_obj);
    assert_eq!(bytecode.is_some(), module_config.emit_bc);
    assert_eq!(bytecode_compressed.is_some(), module_config.emit_bc_compressed);

    Ok(WorkItemResult::Compiled(CompiledModule {
        name: module.name,
        kind: ModuleKind::Regular,
        object,
        bytecode,
        bytecode_compressed,
    }))
}

fn execute_lto_work_item(cgcx: &CodegenContext,
                         mut module: lto::LtoModuleCodegen,
                         module_config: &ModuleConfig,
                         timeline: &mut Timeline)
    -> Result<WorkItemResult, FatalError>
{
    let diag_handler = cgcx.create_diag_handler();

    unsafe {
        let module = module.optimize(cgcx, timeline)?;
        let module = codegen(cgcx, &diag_handler, module, module_config, timeline)?;
        Ok(WorkItemResult::Compiled(module))
    }
}

enum Message {
    Token(io::Result<Acquired>),
    NeedsLTO {
        result: ModuleCodegen,
        worker_id: usize,
    },
    Done {
        result: Result<CompiledModule, ()>,
        worker_id: usize,
    },
    CodegenDone {
        llvm_work_item: WorkItem,
        cost: u64,
    },
    AddImportOnlyModule {
        module_data: SerializedModule,
        work_product: WorkProduct,
    },
    CodegenComplete,
    CodegenItem,
}

struct Diagnostic {
    msg: String,
    code: Option<DiagnosticId>,
    lvl: Level,
}

#[derive(PartialEq, Clone, Copy, Debug)]
enum MainThreadWorkerState {
    Idle,
    Codegenning,
    LLVMing,
}

fn start_executing_work(tcx: TyCtxt,
                        crate_info: &CrateInfo,
                        shared_emitter: SharedEmitter,
                        codegen_worker_send: Sender<Message>,
                        coordinator_receive: Receiver<Box<dyn Any + Send>>,
                        total_cgus: usize,
                        jobserver: Client,
                        time_graph: Option<TimeGraph>,
                        modules_config: Arc<ModuleConfig>,
                        metadata_config: Arc<ModuleConfig>,
                        allocator_config: Arc<ModuleConfig>)
                        -> thread::JoinHandle<Result<CompiledModules, ()>> {
    let coordinator_send = tcx.tx_to_llvm_workers.lock().clone();
    let sess = tcx.sess;

    // Compute the set of symbols we need to retain when doing LTO (if we need to)
    let exported_symbols = {
        let mut exported_symbols = FxHashMap();

        let copy_symbols = |cnum| {
            let symbols = tcx.exported_symbols(cnum)
                             .iter()
                             .map(|&(s, lvl)| (s.symbol_name(tcx).to_string(), lvl))
                             .collect();
            Arc::new(symbols)
        };

        match sess.lto() {
            Lto::No => None,
            Lto::ThinLocal => {
                exported_symbols.insert(LOCAL_CRATE, copy_symbols(LOCAL_CRATE));
                Some(Arc::new(exported_symbols))
            }
            Lto::Fat | Lto::Thin => {
                exported_symbols.insert(LOCAL_CRATE, copy_symbols(LOCAL_CRATE));
                for &cnum in tcx.crates().iter() {
                    exported_symbols.insert(cnum, copy_symbols(cnum));
                }
                Some(Arc::new(exported_symbols))
            }
        }
    };

    // First up, convert our jobserver into a helper thread so we can use normal
    // mpsc channels to manage our messages and such.
    // After we've requested tokens then we'll, when we can,
    // get tokens on `coordinator_receive` which will
    // get managed in the main loop below.
    let coordinator_send2 = coordinator_send.clone();
    let helper = jobserver.into_helper_thread(move |token| {
        drop(coordinator_send2.send(Box::new(Message::Token(token))));
    }).expect("failed to spawn helper thread");

    let mut each_linked_rlib_for_lto = Vec::new();
    drop(link::each_linked_rlib(sess, crate_info, &mut |cnum, path| {
        if link::ignored_for_lto(sess, crate_info, cnum) {
            return
        }
        each_linked_rlib_for_lto.push((cnum, path.to_path_buf()));
    }));

    let assembler_cmd = if modules_config.no_integrated_as {
        // HACK: currently we use linker (gcc) as our assembler
        let (linker, flavor) = link::linker_and_flavor(sess);

        let (name, mut cmd) = get_linker(sess, &linker, flavor);
        cmd.args(&sess.target.target.options.asm_args);
        Some(Arc::new(AssemblerCommand {
            name,
            cmd,
        }))
    } else {
        None
    };

    let cgcx = CodegenContext {
        crate_types: sess.crate_types.borrow().clone(),
        each_linked_rlib_for_lto,
        lto: sess.lto(),
        no_landing_pads: sess.no_landing_pads(),
        fewer_names: sess.fewer_names(),
        save_temps: sess.opts.cg.save_temps,
        opts: Arc::new(sess.opts.clone()),
        time_passes: sess.time_passes(),
        exported_symbols,
        plugin_passes: sess.plugin_llvm_passes.borrow().clone(),
        remark: sess.opts.cg.remark.clone(),
        worker: 0,
        incr_comp_session_dir: sess.incr_comp_session_dir_opt().map(|r| r.clone()),
        coordinator_send,
        diag_emitter: shared_emitter.clone(),
        time_graph,
        output_filenames: tcx.output_filenames(LOCAL_CRATE),
        regular_module_config: modules_config,
        metadata_module_config: metadata_config,
        allocator_module_config: allocator_config,
        tm_factory: target_machine_factory(tcx.sess, false),
        total_cgus,
        msvc_imps_needed: msvc_imps_needed(tcx),
        target_pointer_width: tcx.sess.target.target.target_pointer_width.clone(),
        debuginfo: tcx.sess.opts.debuginfo,
        assembler_cmd,
    };

    // This is the "main loop" of parallel work happening for parallel codegen.
    // It's here that we manage parallelism, schedule work, and work with
    // messages coming from clients.
    //
    // There are a few environmental pre-conditions that shape how the system
    // is set up:
    //
    // - Error reporting only can happen on the main thread because that's the
    //   only place where we have access to the compiler `Session`.
    // - LLVM work can be done on any thread.
    // - Codegen can only happen on the main thread.
    // - Each thread doing substantial work most be in possession of a `Token`
    //   from the `Jobserver`.
    // - The compiler process always holds one `Token`. Any additional `Tokens`
    //   have to be requested from the `Jobserver`.
    //
    // Error Reporting
    // ===============
    // The error reporting restriction is handled separately from the rest: We
    // set up a `SharedEmitter` the holds an open channel to the main thread.
    // When an error occurs on any thread, the shared emitter will send the
    // error message to the receiver main thread (`SharedEmitterMain`). The
    // main thread will periodically query this error message queue and emit
    // any error messages it has received. It might even abort compilation if
    // has received a fatal error. In this case we rely on all other threads
    // being torn down automatically with the main thread.
    // Since the main thread will often be busy doing codegen work, error
    // reporting will be somewhat delayed, since the message queue can only be
    // checked in between to work packages.
    //
    // Work Processing Infrastructure
    // ==============================
    // The work processing infrastructure knows three major actors:
    //
    // - the coordinator thread,
    // - the main thread, and
    // - LLVM worker threads
    //
    // The coordinator thread is running a message loop. It instructs the main
    // thread about what work to do when, and it will spawn off LLVM worker
    // threads as open LLVM WorkItems become available.
    //
    // The job of the main thread is to codegen CGUs into LLVM work package
    // (since the main thread is the only thread that can do this). The main
    // thread will block until it receives a message from the coordinator, upon
    // which it will codegen one CGU, send it to the coordinator and block
    // again. This way the coordinator can control what the main thread is
    // doing.
    //
    // The coordinator keeps a queue of LLVM WorkItems, and when a `Token` is
    // available, it will spawn off a new LLVM worker thread and let it process
    // that a WorkItem. When a LLVM worker thread is done with its WorkItem,
    // it will just shut down, which also frees all resources associated with
    // the given LLVM module, and sends a message to the coordinator that the
    // has been completed.
    //
    // Work Scheduling
    // ===============
    // The scheduler's goal is to minimize the time it takes to complete all
    // work there is, however, we also want to keep memory consumption low
    // if possible. These two goals are at odds with each other: If memory
    // consumption were not an issue, we could just let the main thread produce
    // LLVM WorkItems at full speed, assuring maximal utilization of
    // Tokens/LLVM worker threads. However, since codegen usual is faster
    // than LLVM processing, the queue of LLVM WorkItems would fill up and each
    // WorkItem potentially holds on to a substantial amount of memory.
    //
    // So the actual goal is to always produce just enough LLVM WorkItems as
    // not to starve our LLVM worker threads. That means, once we have enough
    // WorkItems in our queue, we can block the main thread, so it does not
    // produce more until we need them.
    //
    // Doing LLVM Work on the Main Thread
    // ----------------------------------
    // Since the main thread owns the compiler processes implicit `Token`, it is
    // wasteful to keep it blocked without doing any work. Therefore, what we do
    // in this case is: We spawn off an additional LLVM worker thread that helps
    // reduce the queue. The work it is doing corresponds to the implicit
    // `Token`. The coordinator will mark the main thread as being busy with
    // LLVM work. (The actual work happens on another OS thread but we just care
    // about `Tokens`, not actual threads).
    //
    // When any LLVM worker thread finishes while the main thread is marked as
    // "busy with LLVM work", we can do a little switcheroo: We give the Token
    // of the just finished thread to the LLVM worker thread that is working on
    // behalf of the main thread's implicit Token, thus freeing up the main
    // thread again. The coordinator can then again decide what the main thread
    // should do. This allows the coordinator to make decisions at more points
    // in time.
    //
    // Striking a Balance between Throughput and Memory Consumption
    // ------------------------------------------------------------
    // Since our two goals, (1) use as many Tokens as possible and (2) keep
    // memory consumption as low as possible, are in conflict with each other,
    // we have to find a trade off between them. Right now, the goal is to keep
    // all workers busy, which means that no worker should find the queue empty
    // when it is ready to start.
    // How do we do achieve this? Good question :) We actually never know how
    // many `Tokens` are potentially available so it's hard to say how much to
    // fill up the queue before switching the main thread to LLVM work. Also we
    // currently don't have a means to estimate how long a running LLVM worker
    // will still be busy with it's current WorkItem. However, we know the
    // maximal count of available Tokens that makes sense (=the number of CPU
    // cores), so we can take a conservative guess. The heuristic we use here
    // is implemented in the `queue_full_enough()` function.
    //
    // Some Background on Jobservers
    // -----------------------------
    // It's worth also touching on the management of parallelism here. We don't
    // want to just spawn a thread per work item because while that's optimal
    // parallelism it may overload a system with too many threads or violate our
    // configuration for the maximum amount of cpu to use for this process. To
    // manage this we use the `jobserver` crate.
    //
    // Job servers are an artifact of GNU make and are used to manage
    // parallelism between processes. A jobserver is a glorified IPC semaphore
    // basically. Whenever we want to run some work we acquire the semaphore,
    // and whenever we're done with that work we release the semaphore. In this
    // manner we can ensure that the maximum number of parallel workers is
    // capped at any one point in time.
    //
    // LTO and the coordinator thread
    // ------------------------------
    //
    // The final job the coordinator thread is responsible for is managing LTO
    // and how that works. When LTO is requested what we'll to is collect all
    // optimized LLVM modules into a local vector on the coordinator. Once all
    // modules have been codegened and optimized we hand this to the `lto`
    // module for further optimization. The `lto` module will return back a list
    // of more modules to work on, which the coordinator will continue to spawn
    // work for.
    //
    // Each LLVM module is automatically sent back to the coordinator for LTO if
    // necessary. There's already optimizations in place to avoid sending work
    // back to the coordinator if LTO isn't requested.
    return thread::spawn(move || {
        // We pretend to be within the top-level LLVM time-passes task here:
        set_time_depth(1);

        let max_workers = ::num_cpus::get();
        let mut worker_id_counter = 0;
        let mut free_worker_ids = Vec::new();
        let mut get_worker_id = |free_worker_ids: &mut Vec<usize>| {
            if let Some(id) = free_worker_ids.pop() {
                id
            } else {
                let id = worker_id_counter;
                worker_id_counter += 1;
                id
            }
        };

        // This is where we collect codegen units that have gone all the way
        // through codegen and LLVM.
        let mut compiled_modules = vec![];
        let mut compiled_metadata_module = None;
        let mut compiled_allocator_module = None;
        let mut needs_lto = Vec::new();
        let mut lto_import_only_modules = Vec::new();
        let mut started_lto = false;

        // This flag tracks whether all items have gone through codegens
        let mut codegen_done = false;

        // This is the queue of LLVM work items that still need processing.
        let mut work_items = Vec::<(WorkItem, u64)>::new();

        // This are the Jobserver Tokens we currently hold. Does not include
        // the implicit Token the compiler process owns no matter what.
        let mut tokens = Vec::new();

        let mut main_thread_worker_state = MainThreadWorkerState::Idle;
        let mut running = 0;

        let mut llvm_start_time = None;

        // Run the message loop while there's still anything that needs message
        // processing:
        while !codegen_done ||
              work_items.len() > 0 ||
              running > 0 ||
              needs_lto.len() > 0 ||
              lto_import_only_modules.len() > 0 ||
              main_thread_worker_state != MainThreadWorkerState::Idle {

            // While there are still CGUs to be codegened, the coordinator has
            // to decide how to utilize the compiler processes implicit Token:
            // For codegenning more CGU or for running them through LLVM.
            if !codegen_done {
                if main_thread_worker_state == MainThreadWorkerState::Idle {
                    if !queue_full_enough(work_items.len(), running, max_workers) {
                        // The queue is not full enough, codegen more items:
                        if let Err(_) = codegen_worker_send.send(Message::CodegenItem) {
                            panic!("Could not send Message::CodegenItem to main thread")
                        }
                        main_thread_worker_state = MainThreadWorkerState::Codegenning;
                    } else {
                        // The queue is full enough to not let the worker
                        // threads starve. Use the implicit Token to do some
                        // LLVM work too.
                        let (item, _) = work_items.pop()
                            .expect("queue empty - queue_full_enough() broken?");
                        let cgcx = CodegenContext {
                            worker: get_worker_id(&mut free_worker_ids),
                            .. cgcx.clone()
                        };
                        maybe_start_llvm_timer(cgcx.config(item.module_kind()),
                                               &mut llvm_start_time);
                        main_thread_worker_state = MainThreadWorkerState::LLVMing;
                        spawn_work(cgcx, item);
                    }
                }
            } else {
                // If we've finished everything related to normal codegen
                // then it must be the case that we've got some LTO work to do.
                // Perform the serial work here of figuring out what we're
                // going to LTO and then push a bunch of work items onto our
                // queue to do LTO
                if work_items.len() == 0 &&
                   running == 0 &&
                   main_thread_worker_state == MainThreadWorkerState::Idle {
                    assert!(!started_lto);
                    assert!(needs_lto.len() + lto_import_only_modules.len() > 0);
                    started_lto = true;
                    let modules = mem::replace(&mut needs_lto, Vec::new());
                    let import_only_modules =
                        mem::replace(&mut lto_import_only_modules, Vec::new());
                    for (work, cost) in generate_lto_work(&cgcx, modules, import_only_modules) {
                        let insertion_index = work_items
                            .binary_search_by_key(&cost, |&(_, cost)| cost)
                            .unwrap_or_else(|e| e);
                        work_items.insert(insertion_index, (work, cost));
                        if !cgcx.opts.debugging_opts.no_parallel_llvm {
                            helper.request_token();
                        }
                    }
                }

                // In this branch, we know that everything has been codegened,
                // so it's just a matter of determining whether the implicit
                // Token is free to use for LLVM work.
                match main_thread_worker_state {
                    MainThreadWorkerState::Idle => {
                        if let Some((item, _)) = work_items.pop() {
                            let cgcx = CodegenContext {
                                worker: get_worker_id(&mut free_worker_ids),
                                .. cgcx.clone()
                            };
                            maybe_start_llvm_timer(cgcx.config(item.module_kind()),
                                                   &mut llvm_start_time);
                            main_thread_worker_state = MainThreadWorkerState::LLVMing;
                            spawn_work(cgcx, item);
                        } else {
                            // There is no unstarted work, so let the main thread
                            // take over for a running worker. Otherwise the
                            // implicit token would just go to waste.
                            // We reduce the `running` counter by one. The
                            // `tokens.truncate()` below will take care of
                            // giving the Token back.
                            debug_assert!(running > 0);
                            running -= 1;
                            main_thread_worker_state = MainThreadWorkerState::LLVMing;
                        }
                    }
                    MainThreadWorkerState::Codegenning => {
                        bug!("codegen worker should not be codegenning after \
                              codegen was already completed")
                    }
                    MainThreadWorkerState::LLVMing => {
                        // Already making good use of that token
                    }
                }
            }

            // Spin up what work we can, only doing this while we've got available
            // parallelism slots and work left to spawn.
            while work_items.len() > 0 && running < tokens.len() {
                let (item, _) = work_items.pop().unwrap();

                maybe_start_llvm_timer(cgcx.config(item.module_kind()),
                                       &mut llvm_start_time);

                let cgcx = CodegenContext {
                    worker: get_worker_id(&mut free_worker_ids),
                    .. cgcx.clone()
                };

                spawn_work(cgcx, item);
                running += 1;
            }

            // Relinquish accidentally acquired extra tokens
            tokens.truncate(running);

            let msg = coordinator_receive.recv().unwrap();
            match *msg.downcast::<Message>().ok().unwrap() {
                // Save the token locally and the next turn of the loop will use
                // this to spawn a new unit of work, or it may get dropped
                // immediately if we have no more work to spawn.
                Message::Token(token) => {
                    match token {
                        Ok(token) => {
                            tokens.push(token);

                            if main_thread_worker_state == MainThreadWorkerState::LLVMing {
                                // If the main thread token is used for LLVM work
                                // at the moment, we turn that thread into a regular
                                // LLVM worker thread, so the main thread is free
                                // to react to codegen demand.
                                main_thread_worker_state = MainThreadWorkerState::Idle;
                                running += 1;
                            }
                        }
                        Err(e) => {
                            let msg = &format!("failed to acquire jobserver token: {}", e);
                            shared_emitter.fatal(msg);
                            // Exit the coordinator thread
                            panic!("{}", msg)
                        }
                    }
                }

                Message::CodegenDone { llvm_work_item, cost } => {
                    // We keep the queue sorted by estimated processing cost,
                    // so that more expensive items are processed earlier. This
                    // is good for throughput as it gives the main thread more
                    // time to fill up the queue and it avoids scheduling
                    // expensive items to the end.
                    // Note, however, that this is not ideal for memory
                    // consumption, as LLVM module sizes are not evenly
                    // distributed.
                    let insertion_index =
                        work_items.binary_search_by_key(&cost, |&(_, cost)| cost);
                    let insertion_index = match insertion_index {
                        Ok(idx) | Err(idx) => idx
                    };
                    work_items.insert(insertion_index, (llvm_work_item, cost));

                    if !cgcx.opts.debugging_opts.no_parallel_llvm {
                        helper.request_token();
                    }
                    assert_eq!(main_thread_worker_state,
                               MainThreadWorkerState::Codegenning);
                    main_thread_worker_state = MainThreadWorkerState::Idle;
                }

                Message::CodegenComplete => {
                    codegen_done = true;
                    assert_eq!(main_thread_worker_state,
                               MainThreadWorkerState::Codegenning);
                    main_thread_worker_state = MainThreadWorkerState::Idle;
                }

                // If a thread exits successfully then we drop a token associated
                // with that worker and update our `running` count. We may later
                // re-acquire a token to continue running more work. We may also not
                // actually drop a token here if the worker was running with an
                // "ephemeral token"
                //
                // Note that if the thread failed that means it panicked, so we
                // abort immediately.
                Message::Done { result: Ok(compiled_module), worker_id } => {
                    if main_thread_worker_state == MainThreadWorkerState::LLVMing {
                        main_thread_worker_state = MainThreadWorkerState::Idle;
                    } else {
                        running -= 1;
                    }

                    free_worker_ids.push(worker_id);

                    match compiled_module.kind {
                        ModuleKind::Regular => {
                            compiled_modules.push(compiled_module);
                        }
                        ModuleKind::Metadata => {
                            assert!(compiled_metadata_module.is_none());
                            compiled_metadata_module = Some(compiled_module);
                        }
                        ModuleKind::Allocator => {
                            assert!(compiled_allocator_module.is_none());
                            compiled_allocator_module = Some(compiled_module);
                        }
                    }
                }
                Message::NeedsLTO { result, worker_id } => {
                    assert!(!started_lto);
                    if main_thread_worker_state == MainThreadWorkerState::LLVMing {
                        main_thread_worker_state = MainThreadWorkerState::Idle;
                    } else {
                        running -= 1;
                    }
                    free_worker_ids.push(worker_id);
                    needs_lto.push(result);
                }
                Message::AddImportOnlyModule { module_data, work_product } => {
                    assert!(!started_lto);
                    assert!(!codegen_done);
                    assert_eq!(main_thread_worker_state,
                               MainThreadWorkerState::Codegenning);
                    lto_import_only_modules.push((module_data, work_product));
                    main_thread_worker_state = MainThreadWorkerState::Idle;
                }
                Message::Done { result: Err(()), worker_id: _ } => {
                    shared_emitter.fatal("aborting due to worker thread failure");
                    // Exit the coordinator thread
                    return Err(())
                }
                Message::CodegenItem => {
                    bug!("the coordinator should not receive codegen requests")
                }
            }
        }

        if let Some(llvm_start_time) = llvm_start_time {
            let total_llvm_time = Instant::now().duration_since(llvm_start_time);
            // This is the top-level timing for all of LLVM, set the time-depth
            // to zero.
            set_time_depth(0);
            print_time_passes_entry(cgcx.time_passes,
                                    "LLVM passes",
                                    total_llvm_time);
        }

        // Regardless of what order these modules completed in, report them to
        // the backend in the same order every time to ensure that we're handing
        // out deterministic results.
        compiled_modules.sort_by(|a, b| a.name.cmp(&b.name));

        let compiled_metadata_module = compiled_metadata_module
            .expect("Metadata module not compiled?");

        Ok(CompiledModules {
            modules: compiled_modules,
            metadata_module: compiled_metadata_module,
            allocator_module: compiled_allocator_module,
        })
    });

    // A heuristic that determines if we have enough LLVM WorkItems in the
    // queue so that the main thread can do LLVM work instead of codegen
    fn queue_full_enough(items_in_queue: usize,
                         workers_running: usize,
                         max_workers: usize) -> bool {
        // Tune me, plz.
        items_in_queue > 0 &&
        items_in_queue >= max_workers.saturating_sub(workers_running / 2)
    }

    fn maybe_start_llvm_timer(config: &ModuleConfig,
                              llvm_start_time: &mut Option<Instant>) {
        // We keep track of the -Ztime-passes output manually,
        // since the closure-based interface does not fit well here.
        if config.time_passes {
            if llvm_start_time.is_none() {
                *llvm_start_time = Some(Instant::now());
            }
        }
    }
}

pub const CODEGEN_WORKER_ID: usize = ::std::usize::MAX;
pub const CODEGEN_WORKER_TIMELINE: time_graph::TimelineId =
    time_graph::TimelineId(CODEGEN_WORKER_ID);
pub const CODEGEN_WORK_PACKAGE_KIND: time_graph::WorkPackageKind =
    time_graph::WorkPackageKind(&["#DE9597", "#FED1D3", "#FDC5C7", "#B46668", "#88494B"]);
const LLVM_WORK_PACKAGE_KIND: time_graph::WorkPackageKind =
    time_graph::WorkPackageKind(&["#7DB67A", "#C6EEC4", "#ACDAAA", "#579354", "#3E6F3C"]);

fn spawn_work(cgcx: CodegenContext, work: WorkItem) {
    let depth = time_depth();

    thread::spawn(move || {
        set_time_depth(depth);

        // Set up a destructor which will fire off a message that we're done as
        // we exit.
        struct Bomb {
            coordinator_send: Sender<Box<dyn Any + Send>>,
            result: Option<WorkItemResult>,
            worker_id: usize,
        }
        impl Drop for Bomb {
            fn drop(&mut self) {
                let worker_id = self.worker_id;
                let msg = match self.result.take() {
                    Some(WorkItemResult::Compiled(m)) => {
                        Message::Done { result: Ok(m), worker_id }
                    }
                    Some(WorkItemResult::NeedsLTO(m)) => {
                        Message::NeedsLTO { result: m, worker_id }
                    }
                    None => Message::Done { result: Err(()), worker_id }
                };
                drop(self.coordinator_send.send(Box::new(msg)));
            }
        }

        let mut bomb = Bomb {
            coordinator_send: cgcx.coordinator_send.clone(),
            result: None,
            worker_id: cgcx.worker,
        };

        // Execute the work itself, and if it finishes successfully then flag
        // ourselves as a success as well.
        //
        // Note that we ignore any `FatalError` coming out of `execute_work_item`,
        // as a diagnostic was already sent off to the main thread - just
        // surface that there was an error in this worker.
        bomb.result = {
            let timeline = cgcx.time_graph.as_ref().map(|tg| {
                tg.start(time_graph::TimelineId(cgcx.worker),
                         LLVM_WORK_PACKAGE_KIND,
                         &work.name())
            });
            let mut timeline = timeline.unwrap_or(Timeline::noop());
            execute_work_item(&cgcx, work, &mut timeline).ok()
        };
    });
}

pub fn run_assembler(cgcx: &CodegenContext, handler: &Handler, assembly: &Path, object: &Path) {
    let assembler = cgcx.assembler_cmd
        .as_ref()
        .expect("cgcx.assembler_cmd is missing?");

    let pname = &assembler.name;
    let mut cmd = assembler.cmd.clone();
    cmd.arg("-c").arg("-o").arg(object).arg(assembly);
    debug!("{:?}", cmd);

    match cmd.output() {
        Ok(prog) => {
            if !prog.status.success() {
                let mut note = prog.stderr.clone();
                note.extend_from_slice(&prog.stdout);

                handler.struct_err(&format!("linking with `{}` failed: {}",
                                            pname.display(),
                                            prog.status))
                    .note(&format!("{:?}", &cmd))
                    .note(str::from_utf8(&note[..]).unwrap())
                    .emit();
                handler.abort_if_errors();
            }
        },
        Err(e) => {
            handler.err(&format!("could not exec the linker `{}`: {}", pname.display(), e));
            handler.abort_if_errors();
        }
    }
}

pub unsafe fn with_llvm_pmb(llmod: &llvm::Module,
                            config: &ModuleConfig,
                            opt_level: llvm::CodeGenOptLevel,
                            prepare_for_thin_lto: bool,
                            f: &mut dyn FnMut(&llvm::PassManagerBuilder)) {
    use std::ptr;

    // Create the PassManagerBuilder for LLVM. We configure it with
    // reasonable defaults and prepare it to actually populate the pass
    // manager.
    let builder = llvm::LLVMPassManagerBuilderCreate();
    let opt_size = config.opt_size.unwrap_or(llvm::CodeGenOptSizeNone);
    let inline_threshold = config.inline_threshold;

    let pgo_gen_path = config.pgo_gen.as_ref().map(|s| {
        let s = if s.is_empty() { "default_%m.profraw" } else { s };
        CString::new(s.as_bytes()).unwrap()
    });

    let pgo_use_path = if config.pgo_use.is_empty() {
        None
    } else {
        Some(CString::new(config.pgo_use.as_bytes()).unwrap())
    };

    llvm::LLVMRustConfigurePassManagerBuilder(
        builder,
        opt_level,
        config.merge_functions,
        config.vectorize_slp,
        config.vectorize_loop,
        prepare_for_thin_lto,
        pgo_gen_path.as_ref().map_or(ptr::null(), |s| s.as_ptr()),
        pgo_use_path.as_ref().map_or(ptr::null(), |s| s.as_ptr()),
    );

    llvm::LLVMPassManagerBuilderSetSizeLevel(builder, opt_size as u32);

    if opt_size != llvm::CodeGenOptSizeNone {
        llvm::LLVMPassManagerBuilderSetDisableUnrollLoops(builder, 1);
    }

    llvm::LLVMRustAddBuilderLibraryInfo(builder, llmod, config.no_builtins);

    // Here we match what clang does (kinda). For O0 we only inline
    // always-inline functions (but don't add lifetime intrinsics), at O1 we
    // inline with lifetime intrinsics, and O2+ we add an inliner with a
    // thresholds copied from clang.
    match (opt_level, opt_size, inline_threshold) {
        (.., Some(t)) => {
            llvm::LLVMPassManagerBuilderUseInlinerWithThreshold(builder, t as u32);
        }
        (llvm::CodeGenOptLevel::Aggressive, ..) => {
            llvm::LLVMPassManagerBuilderUseInlinerWithThreshold(builder, 275);
        }
        (_, llvm::CodeGenOptSizeDefault, _) => {
            llvm::LLVMPassManagerBuilderUseInlinerWithThreshold(builder, 75);
        }
        (_, llvm::CodeGenOptSizeAggressive, _) => {
            llvm::LLVMPassManagerBuilderUseInlinerWithThreshold(builder, 25);
        }
        (llvm::CodeGenOptLevel::None, ..) => {
            llvm::LLVMRustAddAlwaysInlinePass(builder, false);
        }
        (llvm::CodeGenOptLevel::Less, ..) => {
            llvm::LLVMRustAddAlwaysInlinePass(builder, true);
        }
        (llvm::CodeGenOptLevel::Default, ..) => {
            llvm::LLVMPassManagerBuilderUseInlinerWithThreshold(builder, 225);
        }
        (llvm::CodeGenOptLevel::Other, ..) => {
            bug!("CodeGenOptLevel::Other selected")
        }
    }

    f(builder);
    llvm::LLVMPassManagerBuilderDispose(builder);
}


enum SharedEmitterMessage {
    Diagnostic(Diagnostic),
    InlineAsmError(u32, String),
    AbortIfErrors,
    Fatal(String),
}

#[derive(Clone)]
pub struct SharedEmitter {
    sender: Sender<SharedEmitterMessage>,
}

pub struct SharedEmitterMain {
    receiver: Receiver<SharedEmitterMessage>,
}

impl SharedEmitter {
    pub fn new() -> (SharedEmitter, SharedEmitterMain) {
        let (sender, receiver) = channel();

        (SharedEmitter { sender }, SharedEmitterMain { receiver })
    }

    fn inline_asm_error(&self, cookie: u32, msg: String) {
        drop(self.sender.send(SharedEmitterMessage::InlineAsmError(cookie, msg)));
    }

    fn fatal(&self, msg: &str) {
        drop(self.sender.send(SharedEmitterMessage::Fatal(msg.to_string())));
    }
}

impl Emitter for SharedEmitter {
    fn emit(&mut self, db: &DiagnosticBuilder) {
        drop(self.sender.send(SharedEmitterMessage::Diagnostic(Diagnostic {
            msg: db.message(),
            code: db.code.clone(),
            lvl: db.level,
        })));
        for child in &db.children {
            drop(self.sender.send(SharedEmitterMessage::Diagnostic(Diagnostic {
                msg: child.message(),
                code: None,
                lvl: child.level,
            })));
        }
        drop(self.sender.send(SharedEmitterMessage::AbortIfErrors));
    }
}

impl SharedEmitterMain {
    pub fn check(&self, sess: &Session, blocking: bool) {
        loop {
            let message = if blocking {
                match self.receiver.recv() {
                    Ok(message) => Ok(message),
                    Err(_) => Err(()),
                }
            } else {
                match self.receiver.try_recv() {
                    Ok(message) => Ok(message),
                    Err(_) => Err(()),
                }
            };

            match message {
                Ok(SharedEmitterMessage::Diagnostic(diag)) => {
                    let handler = sess.diagnostic();
                    match diag.code {
                        Some(ref code) => {
                            handler.emit_with_code(&MultiSpan::new(),
                                                   &diag.msg,
                                                   code.clone(),
                                                   diag.lvl);
                        }
                        None => {
                            handler.emit(&MultiSpan::new(),
                                         &diag.msg,
                                         diag.lvl);
                        }
                    }
                }
                Ok(SharedEmitterMessage::InlineAsmError(cookie, msg)) => {
                    match Mark::from_u32(cookie).expn_info() {
                        Some(ei) => sess.span_err(ei.call_site, &msg),
                        None     => sess.err(&msg),
                    }
                }
                Ok(SharedEmitterMessage::AbortIfErrors) => {
                    sess.abort_if_errors();
                }
                Ok(SharedEmitterMessage::Fatal(msg)) => {
                    sess.fatal(&msg);
                }
                Err(_) => {
                    break;
                }
            }

        }
    }
}

pub struct OngoingCodegen {
    crate_name: Symbol,
    crate_hash: Svh,
    metadata: EncodedMetadata,
    windows_subsystem: Option<String>,
    linker_info: LinkerInfo,
    crate_info: CrateInfo,
    time_graph: Option<TimeGraph>,
    coordinator_send: Sender<Box<dyn Any + Send>>,
    codegen_worker_receive: Receiver<Message>,
    shared_emitter_main: SharedEmitterMain,
    future: thread::JoinHandle<Result<CompiledModules, ()>>,
    output_filenames: Arc<OutputFilenames>,
}

impl OngoingCodegen {
    pub(crate) fn join(
        self,
        sess: &Session
    ) -> (CodegenResults, FxHashMap<WorkProductId, WorkProduct>) {
        self.shared_emitter_main.check(sess, true);
        let compiled_modules = match self.future.join() {
            Ok(Ok(compiled_modules)) => compiled_modules,
            Ok(Err(())) => {
                sess.abort_if_errors();
                panic!("expected abort due to worker thread errors")
            },
            Err(_) => {
                sess.fatal("Error during codegen/LLVM phase.");
            }
        };

        sess.abort_if_errors();

        if let Some(time_graph) = self.time_graph {
            time_graph.dump(&format!("{}-timings", self.crate_name));
        }

        let work_products =
            copy_all_cgu_workproducts_to_incr_comp_cache_dir(sess,
                                                             &compiled_modules);
        produce_final_output_artifacts(sess,
                                       &compiled_modules,
                                       &self.output_filenames);

        // FIXME: time_llvm_passes support - does this use a global context or
        // something?
        if sess.codegen_units() == 1 && sess.time_llvm_passes() {
            unsafe { llvm::LLVMRustPrintPassTimings(); }
        }

        (CodegenResults {
            crate_name: self.crate_name,
            crate_hash: self.crate_hash,
            metadata: self.metadata,
            windows_subsystem: self.windows_subsystem,
            linker_info: self.linker_info,
            crate_info: self.crate_info,

            modules: compiled_modules.modules,
            allocator_module: compiled_modules.allocator_module,
            metadata_module: compiled_modules.metadata_module,
        }, work_products)
    }

    pub(crate) fn submit_pre_codegened_module_to_llvm(&self,
                                                       tcx: TyCtxt,
                                                       module: ModuleCodegen) {
        self.wait_for_signal_to_codegen_item();
        self.check_for_errors(tcx.sess);

        // These are generally cheap and won't through off scheduling.
        let cost = 0;
        submit_codegened_module_to_llvm(tcx, module, cost);
    }

    pub fn codegen_finished(&self, tcx: TyCtxt) {
        self.wait_for_signal_to_codegen_item();
        self.check_for_errors(tcx.sess);
        drop(self.coordinator_send.send(Box::new(Message::CodegenComplete)));
    }

    pub fn check_for_errors(&self, sess: &Session) {
        self.shared_emitter_main.check(sess, false);
    }

    pub fn wait_for_signal_to_codegen_item(&self) {
        match self.codegen_worker_receive.recv() {
            Ok(Message::CodegenItem) => {
                // Nothing to do
            }
            Ok(_) => panic!("unexpected message"),
            Err(_) => {
                // One of the LLVM threads must have panicked, fall through so
                // error handling can be reached.
            }
        }
    }
}

pub(crate) fn submit_codegened_module_to_llvm(tcx: TyCtxt,
                                              module: ModuleCodegen,
                                              cost: u64) {
    let llvm_work_item = WorkItem::Optimize(module);
    drop(tcx.tx_to_llvm_workers.lock().send(Box::new(Message::CodegenDone {
        llvm_work_item,
        cost,
    })));
}

pub(crate) fn submit_post_lto_module_to_llvm(tcx: TyCtxt,
                                             module: CachedModuleCodegen) {
    let llvm_work_item = WorkItem::CopyPostLtoArtifacts(module);
    drop(tcx.tx_to_llvm_workers.lock().send(Box::new(Message::CodegenDone {
        llvm_work_item,
        cost: 0,
    })));
}

pub(crate) fn submit_pre_lto_module_to_llvm(tcx: TyCtxt,
                                            module: CachedModuleCodegen) {
    let filename = pre_lto_bitcode_filename(&module.name);
    let bc_path = in_incr_comp_dir_sess(tcx.sess, &filename);
    let file = fs::File::open(&bc_path).unwrap_or_else(|e| {
        panic!("failed to open bitcode file `{}`: {}", bc_path.display(), e)
    });

    let mmap = unsafe {
        memmap::Mmap::map(&file).unwrap_or_else(|e| {
            panic!("failed to mmap bitcode file `{}`: {}", bc_path.display(), e)
        })
    };

    // Schedule the module to be loaded
    drop(tcx.tx_to_llvm_workers.lock().send(Box::new(Message::AddImportOnlyModule {
        module_data: SerializedModule::FromUncompressedFile(mmap),
        work_product: module.source,
    })));
}

pub(super) fn pre_lto_bitcode_filename(module_name: &str) -> String {
    format!("{}.{}", module_name, PRE_THIN_LTO_BC_EXT)
}

fn msvc_imps_needed(tcx: TyCtxt) -> bool {
    // This should never be true (because it's not supported). If it is true,
    // something is wrong with commandline arg validation.
    assert!(!(tcx.sess.opts.debugging_opts.cross_lang_lto.enabled() &&
              tcx.sess.target.target.options.is_like_msvc &&
              tcx.sess.opts.cg.prefer_dynamic));

    tcx.sess.target.target.options.is_like_msvc &&
        tcx.sess.crate_types.borrow().iter().any(|ct| *ct == config::CrateType::Rlib) &&
    // ThinLTO can't handle this workaround in all cases, so we don't
    // emit the `__imp_` symbols. Instead we make them unnecessary by disallowing
    // dynamic linking when cross-language LTO is enabled.
    !tcx.sess.opts.debugging_opts.cross_lang_lto.enabled()
}

// Create a `__imp_<symbol> = &symbol` global for every public static `symbol`.
// This is required to satisfy `dllimport` references to static data in .rlibs
// when using MSVC linker.  We do this only for data, as linker can fix up
// code references on its own.
// See #26591, #27438
fn create_msvc_imps(cgcx: &CodegenContext, llcx: &llvm::Context, llmod: &llvm::Module) {
    if !cgcx.msvc_imps_needed {
        return
    }
    // The x86 ABI seems to require that leading underscores are added to symbol
    // names, so we need an extra underscore on 32-bit. There's also a leading
    // '\x01' here which disables LLVM's symbol mangling (e.g. no extra
    // underscores added in front).
    let prefix = if cgcx.target_pointer_width == "32" {
        "\x01__imp__"
    } else {
        "\x01__imp_"
    };
    unsafe {
        let i8p_ty = Type::i8p_llcx(llcx);
        let globals = base::iter_globals(llmod)
            .filter(|&val| {
                llvm::LLVMRustGetLinkage(val) == llvm::Linkage::ExternalLinkage &&
                    llvm::LLVMIsDeclaration(val) == 0
            })
            .map(move |val| {
                let name = CStr::from_ptr(llvm::LLVMGetValueName(val));
                let mut imp_name = prefix.as_bytes().to_vec();
                imp_name.extend(name.to_bytes());
                let imp_name = CString::new(imp_name).unwrap();
                (imp_name, val)
            })
            .collect::<Vec<_>>();
        for (imp_name, val) in globals {
            let imp = llvm::LLVMAddGlobal(llmod,
                                          i8p_ty,
                                          imp_name.as_ptr() as *const _);
            llvm::LLVMSetInitializer(imp, consts::ptrcast(val, i8p_ty));
            llvm::LLVMRustSetLinkage(imp, llvm::Linkage::ExternalLinkage);
        }
    }
}