1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
// Copyright 2018 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! This module contains the `EvalContext` methods for executing a single step of the interpreter.
//!
//! The main entry point is the `step` method.

use rustc::mir;
use rustc::ty::layout::LayoutOf;
use rustc::mir::interpret::{EvalResult, Scalar, PointerArithmetic};

use super::{EvalContext, Machine};

/// Classify whether an operator is "left-homogeneous", i.e. the LHS has the
/// same type as the result.
#[inline]
fn binop_left_homogeneous(op: mir::BinOp) -> bool {
    use rustc::mir::BinOp::*;
    match op {
        Add | Sub | Mul | Div | Rem | BitXor | BitAnd | BitOr |
        Offset | Shl | Shr =>
            true,
        Eq | Ne | Lt | Le | Gt | Ge =>
            false,
    }
}
/// Classify whether an operator is "right-homogeneous", i.e. the RHS has the
/// same type as the LHS.
#[inline]
fn binop_right_homogeneous(op: mir::BinOp) -> bool {
    use rustc::mir::BinOp::*;
    match op {
        Add | Sub | Mul | Div | Rem | BitXor | BitAnd | BitOr |
        Eq | Ne | Lt | Le | Gt | Ge =>
            true,
        Offset | Shl | Shr =>
            false,
    }
}

impl<'a, 'mir, 'tcx, M: Machine<'mir, 'tcx>> EvalContext<'a, 'mir, 'tcx, M> {
    pub fn inc_step_counter_and_detect_loops(&mut self) -> EvalResult<'tcx, ()> {
        /// The number of steps between loop detector snapshots.
        /// Should be a power of two for performance reasons.
        const DETECTOR_SNAPSHOT_PERIOD: isize = 256;

        {
            let steps = &mut self.steps_since_detector_enabled;

            *steps += 1;
            if *steps < 0 {
                return Ok(());
            }

            *steps %= DETECTOR_SNAPSHOT_PERIOD;
            if *steps != 0 {
                return Ok(());
            }
        }

        if !M::DETECT_LOOPS {
            return Ok(());
        }

        if self.loop_detector.is_empty() {
            // First run of the loop detector

            // FIXME(#49980): make this warning a lint
            self.tcx.sess.span_warn(self.frame().span,
                "Constant evaluating a complex constant, this might take some time");
        }

        self.loop_detector.observe_and_analyze(
            &self.tcx,
            &self.memory,
            &self.stack[..],
        )
    }

    pub fn run(&mut self) -> EvalResult<'tcx> {
        while self.step()? {}
        Ok(())
    }

    /// Returns true as long as there are more things to do.
    fn step(&mut self) -> EvalResult<'tcx, bool> {
        if self.stack.is_empty() {
            return Ok(false);
        }

        let block = self.frame().block;
        let stmt_id = self.frame().stmt;
        let mir = self.mir();
        let basic_block = &mir.basic_blocks()[block];

        let old_frames = self.cur_frame();

        if let Some(stmt) = basic_block.statements.get(stmt_id) {
            assert_eq!(old_frames, self.cur_frame());
            self.statement(stmt)?;
            return Ok(true);
        }

        self.inc_step_counter_and_detect_loops()?;

        let terminator = basic_block.terminator();
        assert_eq!(old_frames, self.cur_frame());
        self.terminator(terminator)?;
        Ok(true)
    }

    fn statement(&mut self, stmt: &mir::Statement<'tcx>) -> EvalResult<'tcx> {
        debug!("{:?}", stmt);

        use rustc::mir::StatementKind::*;

        // Some statements (e.g. box) push new stack frames.
        // We have to record the stack frame number *before* executing the statement.
        let frame_idx = self.cur_frame();
        self.tcx.span = stmt.source_info.span;
        self.memory.tcx.span = stmt.source_info.span;

        match stmt.kind {
            Assign(ref place, ref rvalue) => self.eval_rvalue_into_place(rvalue, place)?,

            SetDiscriminant {
                ref place,
                variant_index,
            } => {
                let dest = self.eval_place(place)?;
                self.write_discriminant_index(variant_index, dest)?;
            }

            // Mark locals as alive
            StorageLive(local) => {
                let old_val = self.storage_live(local)?;
                self.deallocate_local(old_val)?;
            }

            // Mark locals as dead
            StorageDead(local) => {
                let old_val = self.storage_dead(local);
                self.deallocate_local(old_val)?;
            }

            // No dynamic semantics attached to `ReadForMatch`; MIR
            // interpreter is solely intended for borrowck'ed code.
            ReadForMatch(..) => {}

            // Validity checks.
            Validate(op, ref places) => {
                for operand in places {
                    M::validation_op(self, op, operand)?;
                }
            }

            EndRegion(..) => {}
            AscribeUserType(..) => {}

            // Defined to do nothing. These are added by optimization passes, to avoid changing the
            // size of MIR constantly.
            Nop => {}

            InlineAsm { .. } => return err!(InlineAsm),
        }

        self.stack[frame_idx].stmt += 1;
        Ok(())
    }

    /// Evaluate an assignment statement.
    ///
    /// There is no separate `eval_rvalue` function. Instead, the code for handling each rvalue
    /// type writes its results directly into the memory specified by the place.
    fn eval_rvalue_into_place(
        &mut self,
        rvalue: &mir::Rvalue<'tcx>,
        place: &mir::Place<'tcx>,
    ) -> EvalResult<'tcx> {
        let dest = self.eval_place(place)?;

        use rustc::mir::Rvalue::*;
        match *rvalue {
            Use(ref operand) => {
                // Avoid recomputing the layout
                let op = self.eval_operand(operand, Some(dest.layout))?;
                self.copy_op(op, dest)?;
            }

            BinaryOp(bin_op, ref left, ref right) => {
                let layout = if binop_left_homogeneous(bin_op) { Some(dest.layout) } else { None };
                let left = self.read_value(self.eval_operand(left, layout)?)?;
                let layout = if binop_right_homogeneous(bin_op) { Some(left.layout) } else { None };
                let right = self.read_value(self.eval_operand(right, layout)?)?;
                self.binop_ignore_overflow(
                    bin_op,
                    left,
                    right,
                    dest,
                )?;
            }

            CheckedBinaryOp(bin_op, ref left, ref right) => {
                // Due to the extra boolean in the result, we can never reuse the `dest.layout`.
                let left = self.read_value(self.eval_operand(left, None)?)?;
                let layout = if binop_right_homogeneous(bin_op) { Some(left.layout) } else { None };
                let right = self.read_value(self.eval_operand(right, layout)?)?;
                self.binop_with_overflow(
                    bin_op,
                    left,
                    right,
                    dest,
                )?;
            }

            UnaryOp(un_op, ref operand) => {
                // The operand always has the same type as the result.
                let val = self.read_value(self.eval_operand(operand, Some(dest.layout))?)?;
                let val = self.unary_op(un_op, val.to_scalar()?, dest.layout)?;
                self.write_scalar(val, dest)?;
            }

            Aggregate(ref kind, ref operands) => {
                let (dest, active_field_index) = match **kind {
                    mir::AggregateKind::Adt(adt_def, variant_index, _, _, active_field_index) => {
                        self.write_discriminant_index(variant_index, dest)?;
                        if adt_def.is_enum() {
                            (self.place_downcast(dest, variant_index)?, active_field_index)
                        } else {
                            (dest, active_field_index)
                        }
                    }
                    _ => (dest, None)
                };

                for (i, operand) in operands.iter().enumerate() {
                    let op = self.eval_operand(operand, None)?;
                    // Ignore zero-sized fields.
                    if !op.layout.is_zst() {
                        let field_index = active_field_index.unwrap_or(i);
                        let field_dest = self.place_field(dest, field_index as u64)?;
                        self.copy_op(op, field_dest)?;
                    }
                }
            }

            Repeat(ref operand, _) => {
                let op = self.eval_operand(operand, None)?;
                let dest = self.force_allocation(dest)?;
                let length = dest.len(&self)?;

                if length > 0 {
                    // write the first
                    let first = self.mplace_field(dest, 0)?;
                    self.copy_op(op, first.into())?;

                    if length > 1 {
                        // copy the rest
                        let (dest, dest_align) = first.to_scalar_ptr_align();
                        let rest = dest.ptr_offset(first.layout.size, &self)?;
                        self.memory.copy_repeatedly(
                            dest, dest_align, rest, dest_align, first.layout.size, length - 1, true
                        )?;
                    }
                }
            }

            Len(ref place) => {
                // FIXME(CTFE): don't allow computing the length of arrays in const eval
                let src = self.eval_place(place)?;
                let mplace = self.force_allocation(src)?;
                let len = mplace.len(&self)?;
                let size = self.pointer_size();
                self.write_scalar(
                    Scalar::from_uint(len, size),
                    dest,
                )?;
            }

            Ref(_, _, ref place) => {
                let src = self.eval_place(place)?;
                let val = self.force_allocation(src)?.to_ref();
                self.write_value(val, dest)?;
            }

            NullaryOp(mir::NullOp::Box, _) => {
                M::box_alloc(self, dest)?;
            }

            NullaryOp(mir::NullOp::SizeOf, ty) => {
                let ty = self.monomorphize(ty, self.substs());
                let layout = self.layout_of(ty)?;
                assert!(!layout.is_unsized(),
                        "SizeOf nullary MIR operator called for unsized type");
                let size = self.pointer_size();
                self.write_scalar(
                    Scalar::from_uint(layout.size.bytes(), size),
                    dest,
                )?;
            }

            Cast(kind, ref operand, cast_ty) => {
                debug_assert_eq!(self.monomorphize(cast_ty, self.substs()), dest.layout.ty);
                let src = self.eval_operand(operand, None)?;
                self.cast(src, kind, dest)?;
            }

            Discriminant(ref place) => {
                let place = self.eval_place(place)?;
                let discr_val = self.read_discriminant(self.place_to_op(place)?)?.0;
                let size = dest.layout.size;
                self.write_scalar(Scalar::from_uint(discr_val, size), dest)?;
            }
        }

        self.dump_place(*dest);

        Ok(())
    }

    fn terminator(&mut self, terminator: &mir::Terminator<'tcx>) -> EvalResult<'tcx> {
        debug!("{:?}", terminator.kind);
        self.tcx.span = terminator.source_info.span;
        self.memory.tcx.span = terminator.source_info.span;

        let old_stack = self.cur_frame();
        let old_bb = self.frame().block;
        self.eval_terminator(terminator)?;
        if !self.stack.is_empty() {
            // This should change *something*
            debug_assert!(self.cur_frame() != old_stack || self.frame().block != old_bb);
            debug!("// {:?}", self.frame().block);
        }
        Ok(())
    }
}