1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
// Copyright 2018 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! The memory subsystem.
//!
//! Generally, we use `Pointer` to denote memory addresses. However, some operations
//! have a "size"-like parameter, and they take `Scalar` for the address because
//! if the size is 0, then the pointer can also be a (properly aligned, non-NULL)
//! integer.  It is crucial that these operations call `check_align` *before*
//! short-circuiting the empty case!

use std::collections::VecDeque;
use std::ptr;

use rustc::ty::{self, Instance, query::TyCtxtAt};
use rustc::ty::layout::{self, Align, TargetDataLayout, Size, HasDataLayout};
use rustc::mir::interpret::{Pointer, AllocId, Allocation, ConstValue, ScalarMaybeUndef, GlobalId,
                            EvalResult, Scalar, EvalErrorKind, AllocType, PointerArithmetic,
                            truncate};
pub use rustc::mir::interpret::{write_target_uint, read_target_uint};
use rustc_data_structures::fx::{FxHashSet, FxHashMap};

use syntax::ast::Mutability;

use super::Machine;

#[derive(Debug, PartialEq, Eq, Copy, Clone, Hash)]
pub enum MemoryKind<T> {
    /// Error if deallocated except during a stack pop
    Stack,
    /// Additional memory kinds a machine wishes to distinguish from the builtin ones
    Machine(T),
}

#[derive(Clone)]
pub struct Memory<'a, 'mir, 'tcx: 'a + 'mir, M: Machine<'mir, 'tcx>> {
    /// Additional data required by the Machine
    pub data: M::MemoryData,

    /// Allocations local to this instance of the miri engine.  The kind
    /// helps ensure that the same mechanism is used for allocation and
    /// deallocation.  When an allocation is not found here, it is a
    /// static and looked up in the `tcx` for read access.  Writing to
    /// a static creates a copy here, in the machine.
    alloc_map: FxHashMap<AllocId, (MemoryKind<M::MemoryKinds>, Allocation)>,

    /// To be able to compare pointers with NULL, and to check alignment for accesses
    /// to ZSTs (where pointers may dangle), we keep track of the size even for allocations
    /// that do not exist any more.
    dead_alloc_map: FxHashMap<AllocId, (Size, Align)>,

    pub tcx: TyCtxtAt<'a, 'tcx, 'tcx>,
}

impl<'a, 'mir, 'tcx, M: Machine<'mir, 'tcx>> HasDataLayout for &'a Memory<'a, 'mir, 'tcx, M> {
    #[inline]
    fn data_layout(&self) -> &TargetDataLayout {
        &self.tcx.data_layout
    }
}
impl<'a, 'b, 'c, 'mir, 'tcx, M: Machine<'mir, 'tcx>> HasDataLayout
    for &'b &'c mut Memory<'a, 'mir, 'tcx, M>
{
    #[inline]
    fn data_layout(&self) -> &TargetDataLayout {
        &self.tcx.data_layout
    }
}

impl<'a, 'mir, 'tcx, M: Machine<'mir, 'tcx>> Memory<'a, 'mir, 'tcx, M> {
    pub fn new(tcx: TyCtxtAt<'a, 'tcx, 'tcx>, data: M::MemoryData) -> Self {
        Memory {
            data,
            alloc_map: FxHashMap::default(),
            dead_alloc_map: FxHashMap::default(),
            tcx,
        }
    }

    pub fn create_fn_alloc(&mut self, instance: Instance<'tcx>) -> Pointer {
        self.tcx.alloc_map.lock().create_fn_alloc(instance).into()
    }

    pub fn allocate_static_bytes(&mut self, bytes: &[u8]) -> Pointer {
        self.tcx.allocate_bytes(bytes).into()
    }

    pub fn allocate_with(
        &mut self,
        alloc: Allocation,
        kind: MemoryKind<M::MemoryKinds>,
    ) -> EvalResult<'tcx, AllocId> {
        let id = self.tcx.alloc_map.lock().reserve();
        self.alloc_map.insert(id, (kind, alloc));
        Ok(id)
    }

    pub fn allocate(
        &mut self,
        size: Size,
        align: Align,
        kind: MemoryKind<M::MemoryKinds>,
    ) -> EvalResult<'tcx, Pointer> {
        self.allocate_with(Allocation::undef(size, align), kind).map(Pointer::from)
    }

    pub fn reallocate(
        &mut self,
        ptr: Pointer,
        old_size: Size,
        old_align: Align,
        new_size: Size,
        new_align: Align,
        kind: MemoryKind<M::MemoryKinds>,
    ) -> EvalResult<'tcx, Pointer> {
        if ptr.offset.bytes() != 0 {
            return err!(ReallocateNonBasePtr);
        }

        // For simplicities' sake, we implement reallocate as "alloc, copy, dealloc"
        let new_ptr = self.allocate(new_size, new_align, kind)?;
        self.copy(
            ptr.into(),
            old_align,
            new_ptr.into(),
            new_align,
            old_size.min(new_size),
            /*nonoverlapping*/ true,
        )?;
        self.deallocate(ptr, Some((old_size, old_align)), kind)?;

        Ok(new_ptr)
    }

    /// Deallocate a local, or do nothing if that local has been made into a static
    pub fn deallocate_local(&mut self, ptr: Pointer) -> EvalResult<'tcx> {
        // The allocation might be already removed by static interning.
        // This can only really happen in the CTFE instance, not in miri.
        if self.alloc_map.contains_key(&ptr.alloc_id) {
            self.deallocate(ptr, None, MemoryKind::Stack)
        } else {
            Ok(())
        }
    }

    pub fn deallocate(
        &mut self,
        ptr: Pointer,
        size_and_align: Option<(Size, Align)>,
        kind: MemoryKind<M::MemoryKinds>,
    ) -> EvalResult<'tcx> {
        debug!("deallocating: {}", ptr.alloc_id);

        if ptr.offset.bytes() != 0 {
            return err!(DeallocateNonBasePtr);
        }

        let (alloc_kind, alloc) = match self.alloc_map.remove(&ptr.alloc_id) {
            Some(alloc) => alloc,
            None => {
                // Deallocating static memory -- always an error
                return match self.tcx.alloc_map.lock().get(ptr.alloc_id) {
                    Some(AllocType::Function(..)) => err!(DeallocatedWrongMemoryKind(
                        "function".to_string(),
                        format!("{:?}", kind),
                    )),
                    Some(AllocType::Static(..)) |
                    Some(AllocType::Memory(..)) => err!(DeallocatedWrongMemoryKind(
                        "static".to_string(),
                        format!("{:?}", kind),
                    )),
                    None => err!(DoubleFree)
                }
            }
        };

        if alloc_kind != kind {
            return err!(DeallocatedWrongMemoryKind(
                format!("{:?}", alloc_kind),
                format!("{:?}", kind),
            ));
        }
        if let Some((size, align)) = size_and_align {
            if size.bytes() != alloc.bytes.len() as u64 || align != alloc.align {
                let bytes = Size::from_bytes(alloc.bytes.len() as u64);
                return err!(IncorrectAllocationInformation(size,
                                                           bytes,
                                                           align,
                                                           alloc.align));
            }
        }

        // Don't forget to remember size and align of this now-dead allocation
        let old = self.dead_alloc_map.insert(
            ptr.alloc_id,
            (Size::from_bytes(alloc.bytes.len() as u64), alloc.align)
        );
        if old.is_some() {
            bug!("Nothing can be deallocated twice");
        }

        Ok(())
    }

    /// Check that the pointer is aligned AND non-NULL. This supports ZSTs in two ways:
    /// You can pass a scalar, and a `Pointer` does not have to actually still be allocated.
    pub fn check_align(&self, ptr: Scalar, required_align: Align) -> EvalResult<'tcx> {
        // Check non-NULL/Undef, extract offset
        let (offset, alloc_align) = match ptr {
            Scalar::Ptr(ptr) => {
                let (size, align) = self.get_size_and_align(ptr.alloc_id)?;
                // check this is not NULL -- which we can ensure only if this is in-bounds
                // of some (potentially dead) allocation.
                if ptr.offset > size {
                    return err!(PointerOutOfBounds {
                        ptr,
                        access: true,
                        allocation_size: size,
                    });
                };
                // keep data for alignment check
                (ptr.offset.bytes(), align)
            }
            Scalar::Bits { bits, size } => {
                assert_eq!(size as u64, self.pointer_size().bytes());
                assert!(bits < (1u128 << self.pointer_size().bits()));
                // check this is not NULL
                if bits == 0 {
                    return err!(InvalidNullPointerUsage);
                }
                // the "base address" is 0 and hence always aligned
                (bits as u64, required_align)
            }
        };
        // Check alignment
        if alloc_align.abi() < required_align.abi() {
            return err!(AlignmentCheckFailed {
                has: alloc_align,
                required: required_align,
            });
        }
        if offset % required_align.abi() == 0 {
            Ok(())
        } else {
            let has = offset % required_align.abi();
            err!(AlignmentCheckFailed {
                has: Align::from_bytes(has, has).unwrap(),
                required: required_align,
            })
        }
    }

    /// Check if the pointer is "in-bounds". Notice that a pointer pointing at the end
    /// of an allocation (i.e., at the first *inaccessible* location) *is* considered
    /// in-bounds!  This follows C's/LLVM's rules.  The `access` boolean is just used
    /// for the error message.
    /// If you want to check bounds before doing a memory access, be sure to
    /// check the pointer one past the end of your access, then everything will
    /// work out exactly.
    pub fn check_bounds(&self, ptr: Pointer, access: bool) -> EvalResult<'tcx> {
        let alloc = self.get(ptr.alloc_id)?;
        let allocation_size = alloc.bytes.len() as u64;
        if ptr.offset.bytes() > allocation_size {
            return err!(PointerOutOfBounds {
                ptr,
                access,
                allocation_size: Size::from_bytes(allocation_size),
            });
        }
        Ok(())
    }
}

/// Allocation accessors
impl<'a, 'mir, 'tcx, M: Machine<'mir, 'tcx>> Memory<'a, 'mir, 'tcx, M> {
    /// Helper function to obtain the global (tcx) allocation for a static
    fn get_static_alloc(
        tcx: TyCtxtAt<'a, 'tcx, 'tcx>,
        id: AllocId,
    ) -> EvalResult<'tcx, &'tcx Allocation> {
        let alloc = tcx.alloc_map.lock().get(id);
        let def_id = match alloc {
            Some(AllocType::Memory(mem)) => {
                return Ok(mem)
            }
            Some(AllocType::Function(..)) => {
                return err!(DerefFunctionPointer)
            }
            Some(AllocType::Static(did)) => {
                did
            }
            None =>
                return err!(DanglingPointerDeref),
        };
        // We got a "lazy" static that has not been computed yet, do some work
        trace!("static_alloc: Need to compute {:?}", def_id);
        if tcx.is_foreign_item(def_id) {
            return M::find_foreign_static(tcx, def_id);
        }
        let instance = Instance::mono(tcx.tcx, def_id);
        let gid = GlobalId {
            instance,
            promoted: None,
        };
        tcx.const_eval(ty::ParamEnv::reveal_all().and(gid)).map_err(|err| {
            // no need to report anything, the const_eval call takes care of that for statics
            assert!(tcx.is_static(def_id).is_some());
            EvalErrorKind::ReferencedConstant(err).into()
        }).map(|const_val| {
            if let ConstValue::ByRef(_, allocation, _) = const_val.val {
                allocation
            } else {
                bug!("Matching on non-ByRef static")
            }
        })
    }

    pub fn get(&self, id: AllocId) -> EvalResult<'tcx, &Allocation> {
        match self.alloc_map.get(&id) {
            // Normal alloc?
            Some(alloc) => Ok(&alloc.1),
            // Static. No need to make any copies, just provide read access to the global static
            // memory in tcx.
            None => Self::get_static_alloc(self.tcx, id),
        }
    }

    pub fn get_size_and_align(&self, id: AllocId) -> EvalResult<'tcx, (Size, Align)> {
        Ok(match self.get(id) {
            Ok(alloc) => (Size::from_bytes(alloc.bytes.len() as u64), alloc.align),
            Err(err) => match err.kind {
                EvalErrorKind::DanglingPointerDeref =>
                    // This should be in the dead allocation map
                    *self.dead_alloc_map.get(&id).expect(
                        "allocation missing in dead_alloc_map"
                    ),
                // E.g. a function ptr allocation
                _ => return Err(err)
            }
        })
    }

    pub fn get_mut(
        &mut self,
        id: AllocId,
    ) -> EvalResult<'tcx, &mut Allocation> {
        // Static?
        if !self.alloc_map.contains_key(&id) {
            // Ask the machine for what to do
            if let Some(kind) = M::MUT_STATIC_KIND {
                // The machine supports mutating statics.  Make a copy, use that.
                self.deep_copy_static(id, MemoryKind::Machine(kind))?;
            } else {
                return err!(ModifiedConstantMemory)
            }
        }
        // If we come here, we know the allocation is in our map
        let alloc = &mut self.alloc_map.get_mut(&id).unwrap().1;
        // See if we are allowed to mutate this
        if alloc.mutability == Mutability::Immutable {
            err!(ModifiedConstantMemory)
        } else {
            Ok(alloc)
        }
    }

    pub fn get_fn(&self, ptr: Pointer) -> EvalResult<'tcx, Instance<'tcx>> {
        if ptr.offset.bytes() != 0 {
            return err!(InvalidFunctionPointer);
        }
        trace!("reading fn ptr: {}", ptr.alloc_id);
        match self.tcx.alloc_map.lock().get(ptr.alloc_id) {
            Some(AllocType::Function(instance)) => Ok(instance),
            _ => Err(EvalErrorKind::ExecuteMemory.into()),
        }
    }

    /// For debugging, print an allocation and all allocations it points to, recursively.
    pub fn dump_alloc(&self, id: AllocId) {
        if !log_enabled!(::log::Level::Trace) {
            return;
        }
        self.dump_allocs(vec![id]);
    }

    /// For debugging, print a list of allocations and all allocations they point to, recursively.
    pub fn dump_allocs(&self, mut allocs: Vec<AllocId>) {
        if !log_enabled!(::log::Level::Trace) {
            return;
        }
        use std::fmt::Write;
        allocs.sort();
        allocs.dedup();
        let mut allocs_to_print = VecDeque::from(allocs);
        let mut allocs_seen = FxHashSet::default();

        while let Some(id) = allocs_to_print.pop_front() {
            let mut msg = format!("Alloc {:<5} ", format!("{}:", id));
            let prefix_len = msg.len();
            let mut relocations = vec![];

            let (alloc, immutable) =
                // normal alloc?
                match self.alloc_map.get(&id) {
                    Some((kind, alloc)) => (alloc, match kind {
                        MemoryKind::Stack => " (stack)".to_owned(),
                        MemoryKind::Machine(m) => format!(" ({:?})", m),
                    }),
                    None => {
                        // static alloc?
                        match self.tcx.alloc_map.lock().get(id) {
                            Some(AllocType::Memory(a)) => (a, " (immutable)".to_owned()),
                            Some(AllocType::Function(func)) => {
                                trace!("{} {}", msg, func);
                                continue;
                            }
                            Some(AllocType::Static(did)) => {
                                trace!("{} {:?}", msg, did);
                                continue;
                            }
                            None => {
                                trace!("{} (deallocated)", msg);
                                continue;
                            }
                        }
                    },
                };

            for i in 0..(alloc.bytes.len() as u64) {
                let i = Size::from_bytes(i);
                if let Some(&target_id) = alloc.relocations.get(&i) {
                    if allocs_seen.insert(target_id) {
                        allocs_to_print.push_back(target_id);
                    }
                    relocations.push((i, target_id));
                }
                if alloc.undef_mask.is_range_defined(i, i + Size::from_bytes(1)).is_ok() {
                    // this `as usize` is fine, since `i` came from a `usize`
                    write!(msg, "{:02x} ", alloc.bytes[i.bytes() as usize]).unwrap();
                } else {
                    msg.push_str("__ ");
                }
            }

            trace!(
                "{}({} bytes, alignment {}){}",
                msg,
                alloc.bytes.len(),
                alloc.align.abi(),
                immutable
            );

            if !relocations.is_empty() {
                msg.clear();
                write!(msg, "{:1$}", "", prefix_len).unwrap(); // Print spaces.
                let mut pos = Size::ZERO;
                let relocation_width = (self.pointer_size().bytes() - 1) * 3;
                for (i, target_id) in relocations {
                    // this `as usize` is fine, since we can't print more chars than `usize::MAX`
                    write!(msg, "{:1$}", "", ((i - pos) * 3).bytes() as usize).unwrap();
                    let target = format!("({})", target_id);
                    // this `as usize` is fine, since we can't print more chars than `usize::MAX`
                    write!(msg, "└{0:─^1$}┘ ", target, relocation_width as usize).unwrap();
                    pos = i + self.pointer_size();
                }
                trace!("{}", msg);
            }
        }
    }

    pub fn leak_report(&self) -> usize {
        trace!("### LEAK REPORT ###");
        let mut_static_kind = M::MUT_STATIC_KIND.map(|k| MemoryKind::Machine(k));
        let leaks: Vec<_> = self.alloc_map
            .iter()
            .filter_map(|(&id, &(kind, _))|
                // exclude mutable statics
                if Some(kind) == mut_static_kind { None } else { Some(id) } )
            .collect();
        let n = leaks.len();
        self.dump_allocs(leaks);
        n
    }
}

/// Byte accessors
impl<'a, 'mir, 'tcx, M: Machine<'mir, 'tcx>> Memory<'a, 'mir, 'tcx, M> {
    /// The last argument controls whether we error out when there are undefined
    /// or pointer bytes.  You should never call this, call `get_bytes` or
    /// `get_bytes_with_undef_and_ptr` instead,
    fn get_bytes_internal(
        &self,
        ptr: Pointer,
        size: Size,
        align: Align,
        check_defined_and_ptr: bool,
    ) -> EvalResult<'tcx, &[u8]> {
        assert_ne!(size.bytes(), 0, "0-sized accesses should never even get a `Pointer`");
        self.check_align(ptr.into(), align)?;
        // if ptr.offset is in bounds, then so is ptr (because offset checks for overflow)
        self.check_bounds(ptr.offset(size, &*self)?, true)?;

        if check_defined_and_ptr {
            self.check_defined(ptr, size)?;
            self.check_relocations(ptr, size)?;
        } else {
            // We still don't want relocations on the *edges*
            self.check_relocation_edges(ptr, size)?;
        }

        let alloc = self.get(ptr.alloc_id)?;
        assert_eq!(ptr.offset.bytes() as usize as u64, ptr.offset.bytes());
        assert_eq!(size.bytes() as usize as u64, size.bytes());
        let offset = ptr.offset.bytes() as usize;
        Ok(&alloc.bytes[offset..offset + size.bytes() as usize])
    }

    #[inline]
    fn get_bytes(&self, ptr: Pointer, size: Size, align: Align) -> EvalResult<'tcx, &[u8]> {
        self.get_bytes_internal(ptr, size, align, true)
    }

    /// It is the caller's responsibility to handle undefined and pointer bytes.
    /// However, this still checks that there are no relocations on the egdes.
    #[inline]
    fn get_bytes_with_undef_and_ptr(
        &self,
        ptr: Pointer,
        size: Size,
        align: Align
    ) -> EvalResult<'tcx, &[u8]> {
        self.get_bytes_internal(ptr, size, align, false)
    }

    /// Just calling this already marks everything as defined and removes relocations,
    /// so be sure to actually put data there!
    fn get_bytes_mut(
        &mut self,
        ptr: Pointer,
        size: Size,
        align: Align,
    ) -> EvalResult<'tcx, &mut [u8]> {
        assert_ne!(size.bytes(), 0, "0-sized accesses should never even get a `Pointer`");
        self.check_align(ptr.into(), align)?;
        // if ptr.offset is in bounds, then so is ptr (because offset checks for overflow)
        self.check_bounds(ptr.offset(size, &self)?, true)?;

        self.mark_definedness(ptr, size, true)?;
        self.clear_relocations(ptr, size)?;

        let alloc = self.get_mut(ptr.alloc_id)?;
        assert_eq!(ptr.offset.bytes() as usize as u64, ptr.offset.bytes());
        assert_eq!(size.bytes() as usize as u64, size.bytes());
        let offset = ptr.offset.bytes() as usize;
        Ok(&mut alloc.bytes[offset..offset + size.bytes() as usize])
    }
}

/// Reading and writing
impl<'a, 'mir, 'tcx, M: Machine<'mir, 'tcx>> Memory<'a, 'mir, 'tcx, M> {
    /// mark an allocation as static and initialized, either mutable or not
    pub fn intern_static(
        &mut self,
        alloc_id: AllocId,
        mutability: Mutability,
    ) -> EvalResult<'tcx> {
        trace!(
            "mark_static_initialized {:?}, mutability: {:?}",
            alloc_id,
            mutability
        );
        // remove allocation
        let (kind, mut alloc) = self.alloc_map.remove(&alloc_id).unwrap();
        match kind {
            MemoryKind::Machine(_) => bug!("Static cannot refer to machine memory"),
            MemoryKind::Stack => {},
        }
        // ensure llvm knows not to put this into immutable memory
        alloc.mutability = mutability;
        let alloc = self.tcx.intern_const_alloc(alloc);
        self.tcx.alloc_map.lock().set_id_memory(alloc_id, alloc);
        // recurse into inner allocations
        for &alloc in alloc.relocations.values() {
            // FIXME: Reusing the mutability here is likely incorrect.  It is originally
            // determined via `is_freeze`, and data is considered frozen if there is no
            // `UnsafeCell` *immediately* in that data -- however, this search stops
            // at references.  So whenever we follow a reference, we should likely
            // assume immutability -- and we should make sure that the compiler
            // does not permit code that would break this!
            if self.alloc_map.contains_key(&alloc) {
                // Not yet interned, so proceed recursively
                self.intern_static(alloc, mutability)?;
            }
        }
        Ok(())
    }

    /// The alloc_id must refer to a (mutable) static; a deep copy of that
    /// static is made into this memory.
    fn deep_copy_static(
        &mut self,
        id: AllocId,
        kind: MemoryKind<M::MemoryKinds>,
    ) -> EvalResult<'tcx> {
        let alloc = Self::get_static_alloc(self.tcx, id)?;
        if alloc.mutability == Mutability::Immutable {
            return err!(ModifiedConstantMemory);
        }
        let old = self.alloc_map.insert(id, (kind, alloc.clone()));
        assert!(old.is_none(), "deep_copy_static: must not overwrite existing memory");
        Ok(())
    }

    pub fn copy(
        &mut self,
        src: Scalar,
        src_align: Align,
        dest: Scalar,
        dest_align: Align,
        size: Size,
        nonoverlapping: bool,
    ) -> EvalResult<'tcx> {
        self.copy_repeatedly(src, src_align, dest, dest_align, size, 1, nonoverlapping)
    }

    pub fn copy_repeatedly(
        &mut self,
        src: Scalar,
        src_align: Align,
        dest: Scalar,
        dest_align: Align,
        size: Size,
        length: u64,
        nonoverlapping: bool,
    ) -> EvalResult<'tcx> {
        if size.bytes() == 0 {
            // Nothing to do for ZST, other than checking alignment and non-NULLness.
            self.check_align(src, src_align)?;
            self.check_align(dest, dest_align)?;
            return Ok(());
        }
        let src = src.to_ptr()?;
        let dest = dest.to_ptr()?;

        // first copy the relocations to a temporary buffer, because
        // `get_bytes_mut` will clear the relocations, which is correct,
        // since we don't want to keep any relocations at the target.
        // (`get_bytes_with_undef_and_ptr` below checks that there are no
        // relocations overlapping the edges; those would not be handled correctly).
        let relocations = {
            let relocations = self.relocations(src, size)?;
            let mut new_relocations = Vec::with_capacity(relocations.len() * (length as usize));
            for i in 0..length {
                new_relocations.extend(
                    relocations
                    .iter()
                    .map(|&(offset, alloc_id)| {
                    (offset + dest.offset - src.offset + (i * size * relocations.len() as u64),
                    alloc_id)
                    })
                );
            }

            new_relocations
        };

        // This also checks alignment, and relocation edges on the src.
        let src_bytes = self.get_bytes_with_undef_and_ptr(src, size, src_align)?.as_ptr();
        let dest_bytes = self.get_bytes_mut(dest, size * length, dest_align)?.as_mut_ptr();

        // SAFE: The above indexing would have panicked if there weren't at least `size` bytes
        // behind `src` and `dest`. Also, we use the overlapping-safe `ptr::copy` if `src` and
        // `dest` could possibly overlap.
        unsafe {
            assert_eq!(size.bytes() as usize as u64, size.bytes());
            if src.alloc_id == dest.alloc_id {
                if nonoverlapping {
                    if (src.offset <= dest.offset && src.offset + size > dest.offset) ||
                        (dest.offset <= src.offset && dest.offset + size > src.offset)
                    {
                        return err!(Intrinsic(
                            "copy_nonoverlapping called on overlapping ranges".to_string(),
                        ));
                    }
                }

                for i in 0..length {
                    ptr::copy(src_bytes,
                              dest_bytes.offset((size.bytes() * i) as isize),
                              size.bytes() as usize);
                }
            } else {
                for i in 0..length {
                    ptr::copy_nonoverlapping(src_bytes,
                                             dest_bytes.offset((size.bytes() * i) as isize),
                                             size.bytes() as usize);
                }
            }
        }

        // copy definedness to the destination
        self.copy_undef_mask(src, dest, size, length)?;
        // copy the relocations to the destination
        self.get_mut(dest.alloc_id)?.relocations.insert_presorted(relocations);

        Ok(())
    }

    pub fn read_c_str(&self, ptr: Pointer) -> EvalResult<'tcx, &[u8]> {
        let alloc = self.get(ptr.alloc_id)?;
        assert_eq!(ptr.offset.bytes() as usize as u64, ptr.offset.bytes());
        let offset = ptr.offset.bytes() as usize;
        match alloc.bytes[offset..].iter().position(|&c| c == 0) {
            Some(size) => {
                let p1 = Size::from_bytes((size + 1) as u64);
                self.check_relocations(ptr, p1)?;
                self.check_defined(ptr, p1)?;
                Ok(&alloc.bytes[offset..offset + size])
            }
            None => err!(UnterminatedCString(ptr)),
        }
    }

    pub fn read_bytes(&self, ptr: Scalar, size: Size) -> EvalResult<'tcx, &[u8]> {
        // Empty accesses don't need to be valid pointers, but they should still be non-NULL
        let align = Align::from_bytes(1, 1).unwrap();
        if size.bytes() == 0 {
            self.check_align(ptr, align)?;
            return Ok(&[]);
        }
        self.get_bytes(ptr.to_ptr()?, size, align)
    }

    pub fn write_bytes(&mut self, ptr: Scalar, src: &[u8]) -> EvalResult<'tcx> {
        // Empty accesses don't need to be valid pointers, but they should still be non-NULL
        let align = Align::from_bytes(1, 1).unwrap();
        if src.is_empty() {
            self.check_align(ptr, align)?;
            return Ok(());
        }
        let bytes = self.get_bytes_mut(ptr.to_ptr()?, Size::from_bytes(src.len() as u64), align)?;
        bytes.clone_from_slice(src);
        Ok(())
    }

    pub fn write_repeat(&mut self, ptr: Scalar, val: u8, count: Size) -> EvalResult<'tcx> {
        // Empty accesses don't need to be valid pointers, but they should still be non-NULL
        let align = Align::from_bytes(1, 1).unwrap();
        if count.bytes() == 0 {
            self.check_align(ptr, align)?;
            return Ok(());
        }
        let bytes = self.get_bytes_mut(ptr.to_ptr()?, count, align)?;
        for b in bytes {
            *b = val;
        }
        Ok(())
    }

    /// Read a *non-ZST* scalar
    pub fn read_scalar(
        &self,
        ptr: Pointer,
        ptr_align: Align,
        size: Size
    ) -> EvalResult<'tcx, ScalarMaybeUndef> {
        // get_bytes_unchecked tests alignment and relocation edges
        let bytes = self.get_bytes_with_undef_and_ptr(
            ptr, size, ptr_align.min(self.int_align(size))
        )?;
        // Undef check happens *after* we established that the alignment is correct.
        // We must not return Ok() for unaligned pointers!
        if self.check_defined(ptr, size).is_err() {
            // this inflates undefined bytes to the entire scalar, even if only a few
            // bytes are undefined
            return Ok(ScalarMaybeUndef::Undef);
        }
        // Now we do the actual reading
        let bits = read_target_uint(self.tcx.data_layout.endian, bytes).unwrap();
        // See if we got a pointer
        if size != self.pointer_size() {
            // *Now* better make sure that the inside also is free of relocations.
            self.check_relocations(ptr, size)?;
        } else {
            let alloc = self.get(ptr.alloc_id)?;
            match alloc.relocations.get(&ptr.offset) {
                Some(&alloc_id) => {
                    let ptr = Pointer::new(alloc_id, Size::from_bytes(bits as u64));
                    return Ok(ScalarMaybeUndef::Scalar(ptr.into()))
                }
                None => {},
            }
        }
        // We don't. Just return the bits.
        Ok(ScalarMaybeUndef::Scalar(Scalar::from_uint(bits, size)))
    }

    pub fn read_ptr_sized(&self, ptr: Pointer, ptr_align: Align)
        -> EvalResult<'tcx, ScalarMaybeUndef> {
        self.read_scalar(ptr, ptr_align, self.pointer_size())
    }

    /// Write a *non-ZST* scalar
    pub fn write_scalar(
        &mut self,
        ptr: Pointer,
        ptr_align: Align,
        val: ScalarMaybeUndef,
        type_size: Size,
    ) -> EvalResult<'tcx> {
        let val = match val {
            ScalarMaybeUndef::Scalar(scalar) => scalar,
            ScalarMaybeUndef::Undef => return self.mark_definedness(ptr, type_size, false),
        };

        let bytes = match val {
            Scalar::Ptr(val) => {
                assert_eq!(type_size, self.pointer_size());
                val.offset.bytes() as u128
            }

            Scalar::Bits { bits, size } => {
                assert_eq!(size as u64, type_size.bytes());
                debug_assert_eq!(truncate(bits, Size::from_bytes(size.into())), bits,
                    "Unexpected value of size {} when writing to memory", size);
                bits
            },
        };

        {
            // get_bytes_mut checks alignment
            let endian = self.tcx.data_layout.endian;
            let dst = self.get_bytes_mut(ptr, type_size, ptr_align)?;
            write_target_uint(endian, dst, bytes).unwrap();
        }

        // See if we have to also write a relocation
        match val {
            Scalar::Ptr(val) => {
                self.get_mut(ptr.alloc_id)?.relocations.insert(
                    ptr.offset,
                    val.alloc_id,
                );
            }
            _ => {}
        }

        Ok(())
    }

    pub fn write_ptr_sized(&mut self, ptr: Pointer, ptr_align: Align, val: ScalarMaybeUndef)
        -> EvalResult<'tcx> {
        let ptr_size = self.pointer_size();
        self.write_scalar(ptr.into(), ptr_align, val, ptr_size)
    }

    fn int_align(&self, size: Size) -> Align {
        // We assume pointer-sized integers have the same alignment as pointers.
        // We also assume signed and unsigned integers of the same size have the same alignment.
        let ity = match size.bytes() {
            1 => layout::I8,
            2 => layout::I16,
            4 => layout::I32,
            8 => layout::I64,
            16 => layout::I128,
            _ => bug!("bad integer size: {}", size.bytes()),
        };
        ity.align(self)
    }
}

/// Relocations
impl<'a, 'mir, 'tcx, M: Machine<'mir, 'tcx>> Memory<'a, 'mir, 'tcx, M> {
    /// Return all relocations overlapping with the given ptr-offset pair.
    fn relocations(
        &self,
        ptr: Pointer,
        size: Size,
    ) -> EvalResult<'tcx, &[(Size, AllocId)]> {
        // We have to go back `pointer_size - 1` bytes, as that one would still overlap with
        // the beginning of this range.
        let start = ptr.offset.bytes().saturating_sub(self.pointer_size().bytes() - 1);
        let end = ptr.offset + size; // this does overflow checking
        Ok(self.get(ptr.alloc_id)?.relocations.range(Size::from_bytes(start)..end))
    }

    /// Check that there ar eno relocations overlapping with the given range.
    #[inline(always)]
    fn check_relocations(&self, ptr: Pointer, size: Size) -> EvalResult<'tcx> {
        if self.relocations(ptr, size)?.len() != 0 {
            err!(ReadPointerAsBytes)
        } else {
            Ok(())
        }
    }

    /// Remove all relocations inside the given range.
    /// If there are relocations overlapping with the edges, they
    /// are removed as well *and* the bytes they cover are marked as
    /// uninitialized.  This is a somewhat odd "spooky action at a distance",
    /// but it allows strictly more code to run than if we would just error
    /// immediately in that case.
    fn clear_relocations(&mut self, ptr: Pointer, size: Size) -> EvalResult<'tcx> {
        // Find the start and end of the given range and its outermost relocations.
        let (first, last) = {
            // Find all relocations overlapping the given range.
            let relocations = self.relocations(ptr, size)?;
            if relocations.is_empty() {
                return Ok(());
            }

            (relocations.first().unwrap().0,
             relocations.last().unwrap().0 + self.pointer_size())
        };
        let start = ptr.offset;
        let end = start + size;

        let alloc = self.get_mut(ptr.alloc_id)?;

        // Mark parts of the outermost relocations as undefined if they partially fall outside the
        // given range.
        if first < start {
            alloc.undef_mask.set_range(first, start, false);
        }
        if last > end {
            alloc.undef_mask.set_range(end, last, false);
        }

        // Forget all the relocations.
        alloc.relocations.remove_range(first..last);

        Ok(())
    }

    /// Error if there are relocations overlapping with the egdes of the
    /// given memory range.
    #[inline]
    fn check_relocation_edges(&self, ptr: Pointer, size: Size) -> EvalResult<'tcx> {
        self.check_relocations(ptr, Size::ZERO)?;
        self.check_relocations(ptr.offset(size, self)?, Size::ZERO)?;
        Ok(())
    }
}

/// Undefined bytes
impl<'a, 'mir, 'tcx, M: Machine<'mir, 'tcx>> Memory<'a, 'mir, 'tcx, M> {
    // FIXME(solson): This is a very naive, slow version.
    fn copy_undef_mask(
        &mut self,
        src: Pointer,
        dest: Pointer,
        size: Size,
        repeat: u64,
    ) -> EvalResult<'tcx> {
        // The bits have to be saved locally before writing to dest in case src and dest overlap.
        assert_eq!(size.bytes() as usize as u64, size.bytes());

        let undef_mask = self.get(src.alloc_id)?.undef_mask.clone();
        let dest_allocation = self.get_mut(dest.alloc_id)?;

        for i in 0..size.bytes() {
            let defined = undef_mask.get(src.offset + Size::from_bytes(i));

            for j in 0..repeat {
                dest_allocation.undef_mask.set(
                    dest.offset + Size::from_bytes(i + (size.bytes() * j)),
                    defined
                );
            }
        }

        Ok(())
    }

    /// Checks that a range of bytes is defined. If not, returns the `ReadUndefBytes`
    /// error which will report the first byte which is undefined.
    #[inline]
    fn check_defined(&self, ptr: Pointer, size: Size) -> EvalResult<'tcx> {
        let alloc = self.get(ptr.alloc_id)?;
        alloc.undef_mask.is_range_defined(
            ptr.offset,
            ptr.offset + size,
        ).or_else(|idx| err!(ReadUndefBytes(idx)))
    }

    pub fn mark_definedness(
        &mut self,
        ptr: Pointer,
        size: Size,
        new_state: bool,
    ) -> EvalResult<'tcx> {
        if size.bytes() == 0 {
            return Ok(());
        }
        let alloc = self.get_mut(ptr.alloc_id)?;
        alloc.undef_mask.set_range(
            ptr.offset,
            ptr.offset + size,
            new_state,
        );
        Ok(())
    }
}