1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
// Copyright 2018 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! Functions concerning immediate values and operands, and reading from operands.
//! All high-level functions to read from memory work on operands as sources.

use std::hash::{Hash, Hasher};
use std::convert::TryInto;

use rustc::{mir, ty};
use rustc::ty::layout::{self, Size, LayoutOf, TyLayout, HasDataLayout, IntegerExt};

use rustc::mir::interpret::{
    GlobalId, AllocId,
    ConstValue, Pointer, Scalar, ScalarMaybeUndef,
    EvalResult, EvalErrorKind
};
use super::{EvalContext, Machine, MemPlace, MPlaceTy, MemoryKind};

/// A `Value` represents a single immediate self-contained Rust value.
///
/// For optimization of a few very common cases, there is also a representation for a pair of
/// primitive values (`ScalarPair`). It allows Miri to avoid making allocations for checked binary
/// operations and fat pointers. This idea was taken from rustc's codegen.
/// In particular, thanks to `ScalarPair`, arithmetic operations and casts can be entirely
/// defined on `Value`, and do not have to work with a `Place`.
#[derive(Copy, Clone, Debug, Hash, PartialEq, Eq)]
pub enum Value<Id=AllocId> {
    Scalar(ScalarMaybeUndef<Id>),
    ScalarPair(ScalarMaybeUndef<Id>, ScalarMaybeUndef<Id>),
}

impl<'tcx> Value {
    pub fn new_slice(
        val: Scalar,
        len: u64,
        cx: impl HasDataLayout
    ) -> Self {
        Value::ScalarPair(val.into(), Scalar::from_uint(len, cx.data_layout().pointer_size).into())
    }

    pub fn new_dyn_trait(val: Scalar, vtable: Pointer) -> Self {
        Value::ScalarPair(val.into(), Scalar::Ptr(vtable).into())
    }

    #[inline]
    pub fn to_scalar_or_undef(self) -> ScalarMaybeUndef {
        match self {
            Value::Scalar(val) => val,
            Value::ScalarPair(..) => bug!("Got a fat pointer where a scalar was expected"),
        }
    }

    #[inline]
    pub fn to_scalar(self) -> EvalResult<'tcx, Scalar> {
        self.to_scalar_or_undef().not_undef()
    }

    #[inline]
    pub fn to_scalar_pair(self) -> EvalResult<'tcx, (Scalar, Scalar)> {
        match self {
            Value::Scalar(..) => bug!("Got a thin pointer where a scalar pair was expected"),
            Value::ScalarPair(a, b) => Ok((a.not_undef()?, b.not_undef()?))
        }
    }

    /// Convert the value into a pointer (or a pointer-sized integer).
    /// Throws away the second half of a ScalarPair!
    #[inline]
    pub fn to_scalar_ptr(self) -> EvalResult<'tcx, Scalar> {
        match self {
            Value::Scalar(ptr) |
            Value::ScalarPair(ptr, _) => ptr.not_undef(),
        }
    }
}

impl_stable_hash_for!(enum ::interpret::Value {
    Scalar(x),
    ScalarPair(x, y),
});

// ScalarPair needs a type to interpret, so we often have a value and a type together
// as input for binary and cast operations.
#[derive(Copy, Clone, Debug)]
pub struct ValTy<'tcx> {
    value: Value,
    pub layout: TyLayout<'tcx>,
}

impl<'tcx> ::std::ops::Deref for ValTy<'tcx> {
    type Target = Value;
    #[inline(always)]
    fn deref(&self) -> &Value {
        &self.value
    }
}

/// An `Operand` is the result of computing a `mir::Operand`. It can be immediate,
/// or still in memory.  The latter is an optimization, to delay reading that chunk of
/// memory and to avoid having to store arbitrary-sized data here.
#[derive(Copy, Clone, Debug, Hash, PartialEq, Eq)]
pub enum Operand<Id=AllocId> {
    Immediate(Value<Id>),
    Indirect(MemPlace<Id>),
}

impl Operand {
    #[inline]
    pub fn to_mem_place(self) -> MemPlace {
        match self {
            Operand::Indirect(mplace) => mplace,
            _ => bug!("to_mem_place: expected Operand::Indirect, got {:?}", self),

        }
    }

    #[inline]
    pub fn to_immediate(self) -> Value {
        match self {
            Operand::Immediate(val) => val,
            _ => bug!("to_immediate: expected Operand::Immediate, got {:?}", self),

        }
    }
}

impl_stable_hash_for!(enum ::interpret::Operand {
    Immediate(x),
    Indirect(x),
});

#[derive(Copy, Clone, Debug)]
pub struct OpTy<'tcx> {
    crate op: Operand, // ideally we'd make this private, but const_prop needs this
    pub layout: TyLayout<'tcx>,
}

impl<'tcx> ::std::ops::Deref for OpTy<'tcx> {
    type Target = Operand;
    #[inline(always)]
    fn deref(&self) -> &Operand {
        &self.op
    }
}

impl<'tcx> From<MPlaceTy<'tcx>> for OpTy<'tcx> {
    #[inline(always)]
    fn from(mplace: MPlaceTy<'tcx>) -> Self {
        OpTy {
            op: Operand::Indirect(*mplace),
            layout: mplace.layout
        }
    }
}

impl<'tcx> From<ValTy<'tcx>> for OpTy<'tcx> {
    #[inline(always)]
    fn from(val: ValTy<'tcx>) -> Self {
        OpTy {
            op: Operand::Immediate(val.value),
            layout: val.layout
        }
    }
}

// Validation needs to hash OpTy, but we cannot hash Layout -- so we just hash the type
impl<'tcx> Hash for OpTy<'tcx> {
    fn hash<H: Hasher>(&self, state: &mut H) {
        self.op.hash(state);
        self.layout.ty.hash(state);
    }
}
impl<'tcx> PartialEq for OpTy<'tcx> {
    fn eq(&self, other: &Self) -> bool {
        self.op == other.op && self.layout.ty == other.layout.ty
    }
}
impl<'tcx> Eq for OpTy<'tcx> {}

// Use the existing layout if given (but sanity check in debug mode),
// or compute the layout.
#[inline(always)]
fn from_known_layout<'tcx>(
    layout: Option<TyLayout<'tcx>>,
    compute: impl FnOnce() -> EvalResult<'tcx, TyLayout<'tcx>>
) -> EvalResult<'tcx, TyLayout<'tcx>> {
    match layout {
        None => compute(),
        Some(layout) => {
            if cfg!(debug_assertions) {
                let layout2 = compute()?;
                assert_eq!(layout.details, layout2.details,
                    "Mismatch in layout of supposedly equal-layout types {:?} and {:?}",
                    layout.ty, layout2.ty);
            }
            Ok(layout)
        }
    }
}

impl<'a, 'mir, 'tcx, M: Machine<'mir, 'tcx>> EvalContext<'a, 'mir, 'tcx, M> {
    /// Try reading a value in memory; this is interesting particularily for ScalarPair.
    /// Return None if the layout does not permit loading this as a value.
    pub(super) fn try_read_value_from_mplace(
        &self,
        mplace: MPlaceTy<'tcx>,
    ) -> EvalResult<'tcx, Option<Value>> {
        if mplace.layout.is_unsized() {
            // Dont touch unsized
            return Ok(None);
        }
        let (ptr, ptr_align) = mplace.to_scalar_ptr_align();

        if mplace.layout.is_zst() {
            // Not all ZSTs have a layout we would handle below, so just short-circuit them
            // all here.
            self.memory.check_align(ptr, ptr_align)?;
            return Ok(Some(Value::Scalar(Scalar::zst().into())));
        }

        let ptr = ptr.to_ptr()?;
        match mplace.layout.abi {
            layout::Abi::Scalar(..) => {
                let scalar = self.memory.read_scalar(ptr, ptr_align, mplace.layout.size)?;
                Ok(Some(Value::Scalar(scalar)))
            }
            layout::Abi::ScalarPair(ref a, ref b) => {
                let (a, b) = (&a.value, &b.value);
                let (a_size, b_size) = (a.size(self), b.size(self));
                let a_ptr = ptr;
                let b_offset = a_size.abi_align(b.align(self));
                assert!(b_offset.bytes() > 0); // we later use the offset to test which field to use
                let b_ptr = ptr.offset(b_offset, self)?.into();
                let a_val = self.memory.read_scalar(a_ptr, ptr_align, a_size)?;
                let b_val = self.memory.read_scalar(b_ptr, ptr_align, b_size)?;
                Ok(Some(Value::ScalarPair(a_val, b_val)))
            }
            _ => Ok(None),
        }
    }

    /// Try returning an immediate value for the operand.
    /// If the layout does not permit loading this as a value, return where in memory
    /// we can find the data.
    /// Note that for a given layout, this operation will either always fail or always
    /// succeed!  Whether it succeeds depends on whether the layout can be represented
    /// in a `Value`, not on which data is stored there currently.
    pub(crate) fn try_read_value(
        &self,
        src: OpTy<'tcx>,
    ) -> EvalResult<'tcx, Result<Value, MemPlace>> {
        Ok(match src.try_as_mplace() {
            Ok(mplace) => {
                if let Some(val) = self.try_read_value_from_mplace(mplace)? {
                    Ok(val)
                } else {
                    Err(*mplace)
                }
            },
            Err(val) => Ok(val),
        })
    }

    /// Read a value from a place, asserting that that is possible with the given layout.
    #[inline(always)]
    pub fn read_value(&self, op: OpTy<'tcx>) -> EvalResult<'tcx, ValTy<'tcx>> {
        if let Ok(value) = self.try_read_value(op)? {
            Ok(ValTy { value, layout: op.layout })
        } else {
            bug!("primitive read failed for type: {:?}", op.layout.ty);
        }
    }

    /// Read a scalar from a place
    pub fn read_scalar(&self, op: OpTy<'tcx>) -> EvalResult<'tcx, ScalarMaybeUndef> {
        match *self.read_value(op)? {
            Value::ScalarPair(..) => bug!("got ScalarPair for type: {:?}", op.layout.ty),
            Value::Scalar(val) => Ok(val),
        }
    }

    // Turn the MPlace into a string (must already be dereferenced!)
    pub fn read_str(
        &self,
        mplace: MPlaceTy<'tcx>,
    ) -> EvalResult<'tcx, &str> {
        let len = mplace.len(self)?;
        let bytes = self.memory.read_bytes(mplace.ptr, Size::from_bytes(len as u64))?;
        let str = ::std::str::from_utf8(bytes)
            .map_err(|err| EvalErrorKind::ValidationFailure(err.to_string()))?;
        Ok(str)
    }

    pub fn uninit_operand(&mut self, layout: TyLayout<'tcx>) -> EvalResult<'tcx, Operand> {
        // This decides which types we will use the Immediate optimization for, and hence should
        // match what `try_read_value` and `eval_place_to_op` support.
        if layout.is_zst() {
            return Ok(Operand::Immediate(Value::Scalar(Scalar::zst().into())));
        }

        Ok(match layout.abi {
            layout::Abi::Scalar(..) =>
                Operand::Immediate(Value::Scalar(ScalarMaybeUndef::Undef)),
            layout::Abi::ScalarPair(..) =>
                Operand::Immediate(Value::ScalarPair(
                    ScalarMaybeUndef::Undef,
                    ScalarMaybeUndef::Undef,
                )),
            _ => {
                trace!("Forcing allocation for local of type {:?}", layout.ty);
                Operand::Indirect(
                    *self.allocate(layout, MemoryKind::Stack)?
                )
            }
        })
    }

    /// Projection functions
    pub fn operand_field(
        &self,
        op: OpTy<'tcx>,
        field: u64,
    ) -> EvalResult<'tcx, OpTy<'tcx>> {
        let base = match op.try_as_mplace() {
            Ok(mplace) => {
                // The easy case
                let field = self.mplace_field(mplace, field)?;
                return Ok(field.into());
            },
            Err(value) => value
        };

        let field = field.try_into().unwrap();
        let field_layout = op.layout.field(self, field)?;
        if field_layout.is_zst() {
            let val = Value::Scalar(Scalar::zst().into());
            return Ok(OpTy { op: Operand::Immediate(val), layout: field_layout });
        }
        let offset = op.layout.fields.offset(field);
        let value = match base {
            // the field covers the entire type
            _ if offset.bytes() == 0 && field_layout.size == op.layout.size => base,
            // extract fields from types with `ScalarPair` ABI
            Value::ScalarPair(a, b) => {
                let val = if offset.bytes() == 0 { a } else { b };
                Value::Scalar(val)
            },
            Value::Scalar(val) =>
                bug!("field access on non aggregate {:#?}, {:#?}", val, op.layout),
        };
        Ok(OpTy { op: Operand::Immediate(value), layout: field_layout })
    }

    pub fn operand_downcast(
        &self,
        op: OpTy<'tcx>,
        variant: usize,
    ) -> EvalResult<'tcx, OpTy<'tcx>> {
        // Downcasts only change the layout
        Ok(match op.try_as_mplace() {
            Ok(mplace) => {
                self.mplace_downcast(mplace, variant)?.into()
            },
            Err(..) => {
                let layout = op.layout.for_variant(self, variant);
                OpTy { layout, ..op }
            }
        })
    }

    // Take an operand, representing a pointer, and dereference it to a place -- that
    // will always be a MemPlace.
    pub(super) fn deref_operand(
        &self,
        src: OpTy<'tcx>,
    ) -> EvalResult<'tcx, MPlaceTy<'tcx>> {
        let val = self.read_value(src)?;
        trace!("deref to {} on {:?}", val.layout.ty, *val);
        Ok(self.ref_to_mplace(val)?)
    }

    pub fn operand_projection(
        &self,
        base: OpTy<'tcx>,
        proj_elem: &mir::PlaceElem<'tcx>,
    ) -> EvalResult<'tcx, OpTy<'tcx>> {
        use rustc::mir::ProjectionElem::*;
        Ok(match *proj_elem {
            Field(field, _) => self.operand_field(base, field.index() as u64)?,
            Downcast(_, variant) => self.operand_downcast(base, variant)?,
            Deref => self.deref_operand(base)?.into(),
            Subslice { .. } | ConstantIndex { .. } | Index(_) => if base.layout.is_zst() {
                OpTy {
                    op: Operand::Immediate(Value::Scalar(Scalar::zst().into())),
                    // the actual index doesn't matter, so we just pick a convenient one like 0
                    layout: base.layout.field(self, 0)?,
                }
            } else {
                // The rest should only occur as mplace, we do not use Immediates for types
                // allowing such operations.  This matches place_projection forcing an allocation.
                let mplace = base.to_mem_place();
                self.mplace_projection(mplace, proj_elem)?.into()
            }
        })
    }

    // Evaluate a place with the goal of reading from it.  This lets us sometimes
    // avoid allocations.  If you already know the layout, you can pass it in
    // to avoid looking it up again.
    fn eval_place_to_op(
        &self,
        mir_place: &mir::Place<'tcx>,
        layout: Option<TyLayout<'tcx>>,
    ) -> EvalResult<'tcx, OpTy<'tcx>> {
        use rustc::mir::Place::*;
        let op = match *mir_place {
            Local(mir::RETURN_PLACE) => return err!(ReadFromReturnPointer),
            Local(local) => {
                let op = *self.frame().locals[local].access()?;
                let layout = from_known_layout(layout,
                    || self.layout_of_local(self.cur_frame(), local))?;
                OpTy { op, layout }
            },

            Projection(ref proj) => {
                let op = self.eval_place_to_op(&proj.base, None)?;
                self.operand_projection(op, &proj.elem)?
            }

            _ => self.eval_place_to_mplace(mir_place)?.into(),
        };

        trace!("eval_place_to_op: got {:?}", *op);
        Ok(op)
    }

    /// Evaluate the operand, returning a place where you can then find the data.
    /// if you already know the layout, you can save two some table lookups
    /// by passing it in here.
    pub fn eval_operand(
        &self,
        mir_op: &mir::Operand<'tcx>,
        layout: Option<TyLayout<'tcx>>,
    ) -> EvalResult<'tcx, OpTy<'tcx>> {
        use rustc::mir::Operand::*;
        let op = match *mir_op {
            // FIXME: do some more logic on `move` to invalidate the old location
            Copy(ref place) |
            Move(ref place) =>
                self.eval_place_to_op(place, layout)?,

            Constant(ref constant) => {
                let layout = from_known_layout(layout, || {
                    let ty = self.monomorphize(mir_op.ty(self.mir(), *self.tcx), self.substs());
                    self.layout_of(ty)
                })?;
                let op = self.const_value_to_op(constant.literal.val)?;
                OpTy { op, layout }
            }
        };
        trace!("{:?}: {:?}", mir_op, *op);
        Ok(op)
    }

    /// Evaluate a bunch of operands at once
    pub(super) fn eval_operands(
        &self,
        ops: &[mir::Operand<'tcx>],
    ) -> EvalResult<'tcx, Vec<OpTy<'tcx>>> {
        ops.into_iter()
            .map(|op| self.eval_operand(op, None))
            .collect()
    }

    // Also used e.g. when miri runs into a constant.
    pub(super) fn const_value_to_op(
        &self,
        val: ConstValue<'tcx>,
    ) -> EvalResult<'tcx, Operand> {
        trace!("const_value_to_op: {:?}", val);
        match val {
            ConstValue::Unevaluated(def_id, substs) => {
                let instance = self.resolve(def_id, substs)?;
                self.global_to_op(GlobalId {
                    instance,
                    promoted: None,
                })
            }
            ConstValue::ByRef(id, alloc, offset) => {
                // We rely on mutability being set correctly in that allocation to prevent writes
                // where none should happen -- and for `static mut`, we copy on demand anyway.
                Ok(Operand::Indirect(MemPlace::from_ptr(Pointer::new(id, offset), alloc.align)))
            },
            ConstValue::ScalarPair(a, b) =>
                Ok(Operand::Immediate(Value::ScalarPair(a.into(), b))),
            ConstValue::Scalar(x) =>
                Ok(Operand::Immediate(Value::Scalar(x.into()))),
        }
    }
    pub fn const_to_op(
        &self,
        cnst: &ty::Const<'tcx>,
    ) -> EvalResult<'tcx, OpTy<'tcx>> {
        let op = self.const_value_to_op(cnst.val)?;
        Ok(OpTy { op, layout: self.layout_of(cnst.ty)? })
    }

    pub(super) fn global_to_op(&self, gid: GlobalId<'tcx>) -> EvalResult<'tcx, Operand> {
        let cv = self.const_eval(gid)?;
        self.const_value_to_op(cv.val)
    }

    /// Read discriminant, return the runtime value as well as the variant index.
    pub fn read_discriminant(
        &self,
        rval: OpTy<'tcx>,
    ) -> EvalResult<'tcx, (u128, usize)> {
        trace!("read_discriminant_value {:#?}", rval.layout);
        if rval.layout.abi == layout::Abi::Uninhabited {
            return err!(Unreachable);
        }

        match rval.layout.variants {
            layout::Variants::Single { index } => {
                let discr_val = rval.layout.ty.ty_adt_def().map_or(
                    index as u128,
                    |def| def.discriminant_for_variant(*self.tcx, index).val);
                return Ok((discr_val, index));
            }
            layout::Variants::Tagged { .. } |
            layout::Variants::NicheFilling { .. } => {},
        }
        // read raw discriminant value
        let discr_op = self.operand_field(rval, 0)?;
        let discr_val = self.read_value(discr_op)?;
        let raw_discr = discr_val.to_scalar()?;
        trace!("discr value: {:?}", raw_discr);
        // post-process
        Ok(match rval.layout.variants {
            layout::Variants::Single { .. } => bug!(),
            layout::Variants::Tagged { .. } => {
                let real_discr = if discr_val.layout.ty.is_signed() {
                    let i = raw_discr.to_bits(discr_val.layout.size)? as i128;
                    // going from layout tag type to typeck discriminant type
                    // requires first sign extending with the layout discriminant
                    let shift = 128 - discr_val.layout.size.bits();
                    let sexted = (i << shift) >> shift;
                    // and then zeroing with the typeck discriminant type
                    let discr_ty = rval.layout.ty
                        .ty_adt_def().expect("tagged layout corresponds to adt")
                        .repr
                        .discr_type();
                    let discr_ty = layout::Integer::from_attr(self.tcx.tcx, discr_ty);
                    let shift = 128 - discr_ty.size().bits();
                    let truncatee = sexted as u128;
                    (truncatee << shift) >> shift
                } else {
                    raw_discr.to_bits(discr_val.layout.size)?
                };
                // Make sure we catch invalid discriminants
                let index = rval.layout.ty
                    .ty_adt_def()
                    .expect("tagged layout for non adt")
                    .discriminants(self.tcx.tcx)
                    .position(|var| var.val == real_discr)
                    .ok_or_else(|| EvalErrorKind::InvalidDiscriminant(real_discr))?;
                (real_discr, index)
            },
            layout::Variants::NicheFilling {
                dataful_variant,
                ref niche_variants,
                niche_start,
                ..
            } => {
                let variants_start = *niche_variants.start() as u128;
                let variants_end = *niche_variants.end() as u128;
                let real_discr = match raw_discr {
                    Scalar::Ptr(_) => {
                        // The niche must be just 0 (which a pointer value never is)
                        assert!(niche_start == 0);
                        assert!(variants_start == variants_end);
                        dataful_variant as u128
                    },
                    Scalar::Bits { bits: raw_discr, size } => {
                        assert_eq!(size as u64, discr_val.layout.size.bytes());
                        let discr = raw_discr.wrapping_sub(niche_start)
                            .wrapping_add(variants_start);
                        if variants_start <= discr && discr <= variants_end {
                            discr
                        } else {
                            dataful_variant as u128
                        }
                    },
                };
                let index = real_discr as usize;
                assert_eq!(index as u128, real_discr);
                assert!(index < rval.layout.ty
                    .ty_adt_def()
                    .expect("tagged layout for non adt")
                    .variants.len());
                (real_discr, index)
            }
        })
    }

}