1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

use infer::InferCtxt;
use syntax::ast;
use syntax::source_map::Span;
use smallvec::SmallVec;
use traits::{FulfillmentContext, ObligationCause, TraitEngine, TraitEngineExt};
use traits::query::NoSolution;
use ty::{self, Ty, TyCtxt};

use ich::StableHashingContext;
use rustc_data_structures::stable_hasher::{HashStable, StableHasher,
                                           StableHasherResult};
use std::mem;

/// Outlives bounds are relationships between generic parameters,
/// whether they both be regions (`'a: 'b`) or whether types are
/// involved (`T: 'a`).  These relationships can be extracted from the
/// full set of predicates we understand or also from types (in which
/// case they are called implied bounds). They are fed to the
/// `OutlivesEnv` which in turn is supplied to the region checker and
/// other parts of the inference system.
#[derive(Clone, Debug)]
pub enum OutlivesBound<'tcx> {
    RegionSubRegion(ty::Region<'tcx>, ty::Region<'tcx>),
    RegionSubParam(ty::Region<'tcx>, ty::ParamTy),
    RegionSubProjection(ty::Region<'tcx>, ty::ProjectionTy<'tcx>),
}

EnumLiftImpl! {
    impl<'a, 'tcx> Lift<'tcx> for self::OutlivesBound<'a> {
        type Lifted = self::OutlivesBound<'tcx>;
        (self::OutlivesBound::RegionSubRegion)(a, b),
        (self::OutlivesBound::RegionSubParam)(a, b),
        (self::OutlivesBound::RegionSubProjection)(a, b),
    }
}

EnumTypeFoldableImpl! {
    impl<'tcx> TypeFoldable<'tcx> for self::OutlivesBound<'tcx> {
        (self::OutlivesBound::RegionSubRegion)(a, b),
        (self::OutlivesBound::RegionSubParam)(a, b),
        (self::OutlivesBound::RegionSubProjection)(a, b),
    }
}

impl<'a, 'tcx> HashStable<StableHashingContext<'a>> for OutlivesBound<'tcx> {
    fn hash_stable<W: StableHasherResult>(&self,
                                          hcx: &mut StableHashingContext<'a>,
                                          hasher: &mut StableHasher<W>) {
        mem::discriminant(self).hash_stable(hcx, hasher);
        match *self {
            OutlivesBound::RegionSubRegion(ref a, ref b) => {
                a.hash_stable(hcx, hasher);
                b.hash_stable(hcx, hasher);
            }
            OutlivesBound::RegionSubParam(ref a, ref b) => {
                a.hash_stable(hcx, hasher);
                b.hash_stable(hcx, hasher);
            }
            OutlivesBound::RegionSubProjection(ref a, ref b) => {
                a.hash_stable(hcx, hasher);
                b.hash_stable(hcx, hasher);
            }
        }
    }
}

impl<'cx, 'gcx, 'tcx> InferCtxt<'cx, 'gcx, 'tcx> {
    /// Implied bounds are region relationships that we deduce
    /// automatically.  The idea is that (e.g.) a caller must check that a
    /// function's argument types are well-formed immediately before
    /// calling that fn, and hence the *callee* can assume that its
    /// argument types are well-formed. This may imply certain relationships
    /// between generic parameters. For example:
    ///
    ///     fn foo<'a,T>(x: &'a T)
    ///
    /// can only be called with a `'a` and `T` such that `&'a T` is WF.
    /// For `&'a T` to be WF, `T: 'a` must hold. So we can assume `T: 'a`.
    ///
    /// # Parameters
    ///
    /// - `param_env`, the where-clauses in scope
    /// - `body_id`, the body-id to use when normalizing assoc types.
    ///   Note that this may cause outlives obligations to be injected
    ///   into the inference context with this body-id.
    /// - `ty`, the type that we are supposed to assume is WF.
    /// - `span`, a span to use when normalizing, hopefully not important,
    ///   might be useful if a `bug!` occurs.
    pub fn implied_outlives_bounds(
        &self,
        param_env: ty::ParamEnv<'tcx>,
        body_id: ast::NodeId,
        ty: Ty<'tcx>,
        span: Span,
    ) -> Vec<OutlivesBound<'tcx>> {
        debug!("implied_outlives_bounds(ty = {:?})", ty);

        let mut orig_values = SmallVec::new();
        let key = self.canonicalize_query(&param_env.and(ty), &mut orig_values);
        let result = match self.tcx.global_tcx().implied_outlives_bounds(key) {
            Ok(r) => r,
            Err(NoSolution) => {
                self.tcx.sess.delay_span_bug(
                    span,
                    "implied_outlives_bounds failed to solve all obligations"
                );
                return vec![];
            }
        };
        assert!(result.value.is_proven());

        let result = self.instantiate_query_result_and_region_obligations(
            &ObligationCause::misc(span, body_id), param_env, &orig_values, &result);
        debug!("implied_outlives_bounds for {:?}: {:#?}", ty, result);
        let result = match result {
            Ok(v) => v,
            Err(_) => {
                self.tcx.sess.delay_span_bug(
                    span,
                    "implied_outlives_bounds failed to instantiate"
                );
                return vec![];
            }
        };

        // Instantiation may have produced new inference variables and constraints on those
        // variables. Process these constraints.
        let mut fulfill_cx = FulfillmentContext::new();
        fulfill_cx.register_predicate_obligations(self, result.obligations);
        if fulfill_cx.select_all_or_error(self).is_err() {
            self.tcx.sess.delay_span_bug(
                span,
                "implied_outlives_bounds failed to solve obligations from instantiation"
            );
        }

        result.value
    }
}

pub fn explicit_outlives_bounds<'tcx>(
    param_env: ty::ParamEnv<'tcx>,
) -> impl Iterator<Item = OutlivesBound<'tcx>> + 'tcx {
    debug!("explicit_outlives_bounds()");
    param_env
        .caller_bounds
        .into_iter()
        .filter_map(move |predicate| match predicate {
            ty::Predicate::Projection(..) |
            ty::Predicate::Trait(..) |
            ty::Predicate::Subtype(..) |
            ty::Predicate::WellFormed(..) |
            ty::Predicate::ObjectSafe(..) |
            ty::Predicate::ClosureKind(..) |
            ty::Predicate::TypeOutlives(..) |
            ty::Predicate::ConstEvaluatable(..) => None,
            ty::Predicate::RegionOutlives(ref data) => data.no_late_bound_regions().map(
                |ty::OutlivesPredicate(r_a, r_b)| OutlivesBound::RegionSubRegion(r_b, r_a),
            ),
        })
}