1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

use syntax::symbol::InternedString;
use syntax_pos::Span;
use ty::{self, Ty};

use std::cmp;
use std::marker::PhantomData;
use std::u32;
use rustc_data_structures::fx::FxHashMap;
use rustc_data_structures::snapshot_vec as sv;
use rustc_data_structures::unify as ut;

pub struct TypeVariableTable<'tcx> {
    values: sv::SnapshotVec<Delegate>,

    /// Two variables are unified in `eq_relations` when we have a
    /// constraint `?X == ?Y`. This table also stores, for each key,
    /// the known value.
    eq_relations: ut::UnificationTable<ut::InPlace<TyVidEqKey<'tcx>>>,

    /// Two variables are unified in `eq_relations` when we have a
    /// constraint `?X <: ?Y` *or* a constraint `?Y <: ?X`. This second
    /// table exists only to help with the occurs check. In particular,
    /// we want to report constraints like these as an occurs check
    /// violation:
    ///
    ///     ?1 <: ?3
    ///     Box<?3> <: ?1
    ///
    /// This works because `?1` and `?3` are unified in the
    /// `sub_relations` relation (not in `eq_relations`). Then when we
    /// process the `Box<?3> <: ?1` constraint, we do an occurs check
    /// on `Box<?3>` and find a potential cycle.
    ///
    /// This is reasonable because, in Rust, subtypes have the same
    /// "skeleton" and hence there is no possible type such that
    /// (e.g.)  `Box<?3> <: ?3` for any `?3`.
    sub_relations: ut::UnificationTable<ut::InPlace<ty::TyVid>>,
}

/// Reasons to create a type inference variable
#[derive(Copy, Clone, Debug)]
pub enum TypeVariableOrigin {
    MiscVariable(Span),
    NormalizeProjectionType(Span),
    TypeInference(Span),
    TypeParameterDefinition(Span, InternedString),

    /// one of the upvars or closure kind parameters in a `ClosureSubsts`
    /// (before it has been determined)
    ClosureSynthetic(Span),
    SubstitutionPlaceholder(Span),
    AutoDeref(Span),
    AdjustmentType(Span),
    DivergingStmt(Span),
    DivergingBlockExpr(Span),
    DivergingFn(Span),
    LatticeVariable(Span),
    Generalized(ty::TyVid),
}

pub type TypeVariableMap = FxHashMap<ty::TyVid, TypeVariableOrigin>;

struct TypeVariableData {
    origin: TypeVariableOrigin,
    diverging: bool
}

#[derive(Copy, Clone, Debug)]
pub enum TypeVariableValue<'tcx> {
    Known { value: Ty<'tcx> },
    Unknown { universe: ty::UniverseIndex },
}

impl<'tcx> TypeVariableValue<'tcx> {
    /// If this value is known, returns the type it is known to be.
    /// Otherwise, `None`.
    pub fn known(&self) -> Option<Ty<'tcx>> {
        match *self {
            TypeVariableValue::Unknown { .. } => None,
            TypeVariableValue::Known { value } => Some(value),
        }
    }

    pub fn is_unknown(&self) -> bool {
        match *self {
            TypeVariableValue::Unknown { .. } => true,
            TypeVariableValue::Known { .. } => false,
        }
    }
}

pub struct Snapshot<'tcx> {
    snapshot: sv::Snapshot,
    eq_snapshot: ut::Snapshot<ut::InPlace<TyVidEqKey<'tcx>>>,
    sub_snapshot: ut::Snapshot<ut::InPlace<ty::TyVid>>,
}

struct Instantiate {
    vid: ty::TyVid,
}

struct Delegate;

impl<'tcx> TypeVariableTable<'tcx> {
    pub fn new() -> TypeVariableTable<'tcx> {
        TypeVariableTable {
            values: sv::SnapshotVec::new(),
            eq_relations: ut::UnificationTable::new(),
            sub_relations: ut::UnificationTable::new(),
        }
    }

    /// Returns the diverges flag given when `vid` was created.
    ///
    /// Note that this function does not return care whether
    /// `vid` has been unified with something else or not.
    pub fn var_diverges<'a>(&'a self, vid: ty::TyVid) -> bool {
        self.values.get(vid.index as usize).diverging
    }

    /// Returns the origin that was given when `vid` was created.
    ///
    /// Note that this function does not return care whether
    /// `vid` has been unified with something else or not.
    pub fn var_origin(&self, vid: ty::TyVid) -> &TypeVariableOrigin {
        &self.values.get(vid.index as usize).origin
    }

    /// Records that `a == b`, depending on `dir`.
    ///
    /// Precondition: neither `a` nor `b` are known.
    pub fn equate(&mut self, a: ty::TyVid, b: ty::TyVid) {
        debug_assert!(self.probe(a).is_unknown());
        debug_assert!(self.probe(b).is_unknown());
        self.eq_relations.union(a, b);
        self.sub_relations.union(a, b);
    }

    /// Records that `a <: b`, depending on `dir`.
    ///
    /// Precondition: neither `a` nor `b` are known.
    pub fn sub(&mut self, a: ty::TyVid, b: ty::TyVid) {
        debug_assert!(self.probe(a).is_unknown());
        debug_assert!(self.probe(b).is_unknown());
        self.sub_relations.union(a, b);
    }

    /// Instantiates `vid` with the type `ty`.
    ///
    /// Precondition: `vid` must not have been previously instantiated.
    pub fn instantiate(&mut self, vid: ty::TyVid, ty: Ty<'tcx>) {
        let vid = self.root_var(vid);
        debug_assert!(self.probe(vid).is_unknown());
        debug_assert!(self.eq_relations.probe_value(vid).is_unknown(),
                      "instantiating type variable `{:?}` twice: new-value = {:?}, old-value={:?}",
                      vid, ty, self.eq_relations.probe_value(vid));
        self.eq_relations.union_value(vid, TypeVariableValue::Known { value: ty });

        // Hack: we only need this so that `types_escaping_snapshot`
        // can see what has been unified; see the Delegate impl for
        // more details.
        self.values.record(Instantiate { vid: vid });
    }

    /// Creates a new type variable.
    ///
    /// - `diverging`: indicates if this is a "diverging" type
    ///   variable, e.g.  one created as the type of a `return`
    ///   expression. The code in this module doesn't care if a
    ///   variable is diverging, but the main Rust type-checker will
    ///   sometimes "unify" such variables with the `!` or `()` types.
    /// - `origin`: indicates *why* the type variable was created.
    ///   The code in this module doesn't care, but it can be useful
    ///   for improving error messages.
    pub fn new_var(&mut self,
                   universe: ty::UniverseIndex,
                   diverging: bool,
                   origin: TypeVariableOrigin)
                   -> ty::TyVid {
        let eq_key = self.eq_relations.new_key(TypeVariableValue::Unknown { universe });

        let sub_key = self.sub_relations.new_key(());
        assert_eq!(eq_key.vid, sub_key);

        let index = self.values.push(TypeVariableData {
            origin,
            diverging,
        });
        assert_eq!(eq_key.vid.index, index as u32);

        debug!("new_var(index={:?}, diverging={:?}, origin={:?}", eq_key.vid, diverging, origin);

        eq_key.vid
    }

    /// Returns the number of type variables created thus far.
    pub fn num_vars(&self) -> usize {
        self.values.len()
    }

    /// Returns the "root" variable of `vid` in the `eq_relations`
    /// equivalence table. All type variables that have been equated
    /// will yield the same root variable (per the union-find
    /// algorithm), so `root_var(a) == root_var(b)` implies that `a ==
    /// b` (transitively).
    pub fn root_var(&mut self, vid: ty::TyVid) -> ty::TyVid {
        self.eq_relations.find(vid).vid
    }

    /// Returns the "root" variable of `vid` in the `sub_relations`
    /// equivalence table. All type variables that have been are
    /// related via equality or subtyping will yield the same root
    /// variable (per the union-find algorithm), so `sub_root_var(a)
    /// == sub_root_var(b)` implies that:
    ///
    ///     exists X. (a <: X || X <: a) && (b <: X || X <: b)
    pub fn sub_root_var(&mut self, vid: ty::TyVid) -> ty::TyVid {
        self.sub_relations.find(vid)
    }

    /// True if `a` and `b` have same "sub-root" (i.e., exists some
    /// type X such that `forall i in {a, b}. (i <: X || X <: i)`.
    pub fn sub_unified(&mut self, a: ty::TyVid, b: ty::TyVid) -> bool {
        self.sub_root_var(a) == self.sub_root_var(b)
    }

    /// Retrieves the type to which `vid` has been instantiated, if
    /// any.
    pub fn probe(&mut self, vid: ty::TyVid) -> TypeVariableValue<'tcx> {
        self.eq_relations.probe_value(vid)
    }

    /// If `t` is a type-inference variable, and it has been
    /// instantiated, then return the with which it was
    /// instantiated. Otherwise, returns `t`.
    pub fn replace_if_possible(&mut self, t: Ty<'tcx>) -> Ty<'tcx> {
        match t.sty {
            ty::Infer(ty::TyVar(v)) => {
                match self.probe(v) {
                    TypeVariableValue::Unknown { .. } => t,
                    TypeVariableValue::Known { value } => value,
                }
            }
            _ => t,
        }
    }

    /// Creates a snapshot of the type variable state.  This snapshot
    /// must later be committed (`commit()`) or rolled back
    /// (`rollback_to()`).  Nested snapshots are permitted, but must
    /// be processed in a stack-like fashion.
    pub fn snapshot(&mut self) -> Snapshot<'tcx> {
        Snapshot {
            snapshot: self.values.start_snapshot(),
            eq_snapshot: self.eq_relations.snapshot(),
            sub_snapshot: self.sub_relations.snapshot(),
        }
    }

    /// Undoes all changes since the snapshot was created. Any
    /// snapshots created since that point must already have been
    /// committed or rolled back.
    pub fn rollback_to(&mut self, s: Snapshot<'tcx>) {
        debug!("rollback_to{:?}", {
            for action in self.values.actions_since_snapshot(&s.snapshot) {
                match *action {
                    sv::UndoLog::NewElem(index) => {
                        debug!("inference variable _#{}t popped", index)
                    }
                    _ => { }
                }
            }
        });

        let Snapshot { snapshot, eq_snapshot, sub_snapshot } = s;
        self.values.rollback_to(snapshot);
        self.eq_relations.rollback_to(eq_snapshot);
        self.sub_relations.rollback_to(sub_snapshot);
    }

    /// Commits all changes since the snapshot was created, making
    /// them permanent (unless this snapshot was created within
    /// another snapshot). Any snapshots created since that point
    /// must already have been committed or rolled back.
    pub fn commit(&mut self, s: Snapshot<'tcx>) {
        let Snapshot { snapshot, eq_snapshot, sub_snapshot } = s;
        self.values.commit(snapshot);
        self.eq_relations.commit(eq_snapshot);
        self.sub_relations.commit(sub_snapshot);
    }

    /// Returns a map `{V1 -> V2}`, where the keys `{V1}` are
    /// ty-variables created during the snapshot, and the values
    /// `{V2}` are the root variables that they were unified with,
    /// along with their origin.
    pub fn types_created_since_snapshot(&mut self, s: &Snapshot<'tcx>) -> TypeVariableMap {
        let actions_since_snapshot = self.values.actions_since_snapshot(&s.snapshot);

        actions_since_snapshot
            .iter()
            .filter_map(|action| match action {
                &sv::UndoLog::NewElem(index) => Some(ty::TyVid { index: index as u32 }),
                _ => None,
            })
            .map(|vid| {
                let origin = self.values.get(vid.index as usize).origin.clone();
                (vid, origin)
            })
            .collect()
    }

    /// Find the set of type variables that existed *before* `s`
    /// but which have only been unified since `s` started, and
    /// return the types with which they were unified. So if we had
    /// a type variable `V0`, then we started the snapshot, then we
    /// created a type variable `V1`, unifed `V0` with `T0`, and
    /// unified `V1` with `T1`, this function would return `{T0}`.
    pub fn types_escaping_snapshot(&mut self, s: &Snapshot<'tcx>) -> Vec<Ty<'tcx>> {
        let mut new_elem_threshold = u32::MAX;
        let mut escaping_types = Vec::new();
        let actions_since_snapshot = self.values.actions_since_snapshot(&s.snapshot);
        debug!("actions_since_snapshot.len() = {}", actions_since_snapshot.len());
        for action in actions_since_snapshot {
            match *action {
                sv::UndoLog::NewElem(index) => {
                    // if any new variables were created during the
                    // snapshot, remember the lower index (which will
                    // always be the first one we see). Note that this
                    // action must precede those variables being
                    // specified.
                    new_elem_threshold = cmp::min(new_elem_threshold, index as u32);
                    debug!("NewElem({}) new_elem_threshold={}", index, new_elem_threshold);
                }

                sv::UndoLog::Other(Instantiate { vid, .. }) => {
                    if vid.index < new_elem_threshold {
                        // quick check to see if this variable was
                        // created since the snapshot started or not.
                        let escaping_type = match self.eq_relations.probe_value(vid) {
                            TypeVariableValue::Unknown { .. } => bug!(),
                            TypeVariableValue::Known { value } => value,
                        };
                        escaping_types.push(escaping_type);
                    }
                    debug!("SpecifyVar({:?}) new_elem_threshold={}", vid, new_elem_threshold);
                }

                _ => { }
            }
        }

        escaping_types
    }

    /// Returns indices of all variables that are not yet
    /// instantiated.
    pub fn unsolved_variables(&mut self) -> Vec<ty::TyVid> {
        (0..self.values.len())
            .filter_map(|i| {
                let vid = ty::TyVid { index: i as u32 };
                match self.probe(vid) {
                    TypeVariableValue::Unknown { .. } => Some(vid),
                    TypeVariableValue::Known { .. } => None,
                }
            })
            .collect()
    }
}

impl sv::SnapshotVecDelegate for Delegate {
    type Value = TypeVariableData;
    type Undo = Instantiate;

    fn reverse(_values: &mut Vec<TypeVariableData>, _action: Instantiate) {
        // We don't actually have to *do* anything to reverse an
        // instanation; the value for a variable is stored in the
        // `eq_relations` and hence its rollback code will handle
        // it. In fact, we could *almost* just remove the
        // `SnapshotVec` entirely, except that we would have to
        // reproduce *some* of its logic, since we want to know which
        // type variables have been instantiated since the snapshot
        // was started, so we can implement `types_escaping_snapshot`.
        //
        // (If we extended the `UnificationTable` to let us see which
        // values have been unified and so forth, that might also
        // suffice.)
    }
}

///////////////////////////////////////////////////////////////////////////

/// These structs (a newtyped TyVid) are used as the unification key
/// for the `eq_relations`; they carry a `TypeVariableValue` along
/// with them.
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
struct TyVidEqKey<'tcx> {
    vid: ty::TyVid,

    // in the table, we map each ty-vid to one of these:
    phantom: PhantomData<TypeVariableValue<'tcx>>,
}

impl<'tcx> From<ty::TyVid> for TyVidEqKey<'tcx> {
    fn from(vid: ty::TyVid) -> Self {
        TyVidEqKey { vid, phantom: PhantomData }
    }
}

impl<'tcx> ut::UnifyKey for TyVidEqKey<'tcx> {
    type Value = TypeVariableValue<'tcx>;
    fn index(&self) -> u32 { self.vid.index }
    fn from_index(i: u32) -> Self { TyVidEqKey::from(ty::TyVid { index: i }) }
    fn tag() -> &'static str { "TyVidEqKey" }
}

impl<'tcx> ut::UnifyValue for TypeVariableValue<'tcx> {
    type Error = ut::NoError;

    fn unify_values(value1: &Self, value2: &Self) -> Result<Self, ut::NoError> {
        match (value1, value2) {
            // We never equate two type variables, both of which
            // have known types.  Instead, we recursively equate
            // those types.
            (&TypeVariableValue::Known { .. }, &TypeVariableValue::Known { .. }) => {
                bug!("equating two type variables, both of which have known types")
            }

            // If one side is known, prefer that one.
            (&TypeVariableValue::Known { .. }, &TypeVariableValue::Unknown { .. }) => Ok(*value1),
            (&TypeVariableValue::Unknown { .. }, &TypeVariableValue::Known { .. }) => Ok(*value2),

            // If both sides are *unknown*, it hardly matters, does it?
            (&TypeVariableValue::Unknown { universe: universe1 },
             &TypeVariableValue::Unknown { universe: universe2 }) =>  {
                // If we unify two unbound variables, ?T and ?U, then whatever
                // value they wind up taking (which must be the same value) must
                // be nameable by both universes. Therefore, the resulting
                // universe is the minimum of the two universes, because that is
                // the one which contains the fewest names in scope.
                let universe = cmp::min(universe1, universe2);
                Ok(TypeVariableValue::Unknown { universe })
            }
        }
    }
}

/// Raw `TyVid` are used as the unification key for `sub_relations`;
/// they carry no values.
impl ut::UnifyKey for ty::TyVid {
    type Value = ();
    fn index(&self) -> u32 { self.index }
    fn from_index(i: u32) -> ty::TyVid { ty::TyVid { index: i } }
    fn tag() -> &'static str { "TyVid" }
}