1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

// Coherence phase
//
// The job of the coherence phase of typechecking is to ensure that
// each trait has at most one implementation for each type. This is
// done by the orphan and overlap modules. Then we build up various
// mappings. That mapping code resides here.

use hir::def_id::{DefId, LOCAL_CRATE};
use rustc::traits;
use rustc::ty::{self, TyCtxt, TypeFoldable};
use rustc::ty::query::Providers;

use syntax::ast;

mod builtin;
mod inherent_impls;
mod inherent_impls_overlap;
mod orphan;
mod unsafety;

fn check_impl<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, node_id: ast::NodeId) {
    let impl_def_id = tcx.hir.local_def_id(node_id);

    // If there are no traits, then this implementation must have a
    // base type.

    if let Some(trait_ref) = tcx.impl_trait_ref(impl_def_id) {
        debug!("(checking implementation) adding impl for trait '{:?}', item '{}'",
                trait_ref,
                tcx.item_path_str(impl_def_id));

        // Skip impls where one of the self type is an error type.
        // This occurs with e.g. resolve failures (#30589).
        if trait_ref.references_error() {
            return;
        }

        enforce_trait_manually_implementable(tcx, impl_def_id, trait_ref.def_id);
    }
}

fn enforce_trait_manually_implementable(tcx: TyCtxt, impl_def_id: DefId, trait_def_id: DefId) {
    let did = Some(trait_def_id);
    let li = tcx.lang_items();
    let span = tcx.sess.source_map().def_span(tcx.span_of_impl(impl_def_id).unwrap());

    // Disallow *all* explicit impls of `Sized` and `Unsize` for now.
    if did == li.sized_trait() {
        struct_span_err!(tcx.sess,
                         span,
                         E0322,
                         "explicit impls for the `Sized` trait are not permitted")
            .span_label(span, "impl of 'Sized' not allowed")
            .emit();
        return;
    }

    if did == li.unsize_trait() {
        struct_span_err!(tcx.sess,
                         span,
                         E0328,
                         "explicit impls for the `Unsize` trait are not permitted")
            .span_label(span, "impl of `Unsize` not allowed")
            .emit();
        return;
    }

    if tcx.features().unboxed_closures {
        // the feature gate allows all Fn traits
        return;
    }

    let trait_name = if did == li.fn_trait() {
        "Fn"
    } else if did == li.fn_mut_trait() {
        "FnMut"
    } else if did == li.fn_once_trait() {
        "FnOnce"
    } else {
        return; // everything OK
    };
    struct_span_err!(tcx.sess,
                     span,
                     E0183,
                     "manual implementations of `{}` are experimental",
                     trait_name)
        .span_label(span, format!("manual implementations of `{}` are experimental", trait_name))
        .help("add `#![feature(unboxed_closures)]` to the crate attributes to enable")
        .emit();
}

pub fn provide(providers: &mut Providers) {
    use self::builtin::coerce_unsized_info;
    use self::inherent_impls::{crate_inherent_impls, inherent_impls};
    use self::inherent_impls_overlap::crate_inherent_impls_overlap_check;

    *providers = Providers {
        coherent_trait,
        crate_inherent_impls,
        inherent_impls,
        crate_inherent_impls_overlap_check,
        coerce_unsized_info,
        ..*providers
    };
}

fn coherent_trait<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId) {
    let impls = tcx.hir.trait_impls(def_id);
    for &impl_id in impls {
        check_impl(tcx, impl_id);
    }
    for &impl_id in impls {
        check_impl_overlap(tcx, impl_id);
    }
    builtin::check_trait(tcx, def_id);
}

pub fn check_coherence<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>) {
    for &trait_def_id in tcx.hir.krate().trait_impls.keys() {
        ty::query::queries::coherent_trait::ensure(tcx, trait_def_id);
    }

    unsafety::check(tcx);
    orphan::check(tcx);

    // these queries are executed for side-effects (error reporting):
    ty::query::queries::crate_inherent_impls::ensure(tcx, LOCAL_CRATE);
    ty::query::queries::crate_inherent_impls_overlap_check::ensure(tcx, LOCAL_CRATE);
}

/// Overlap: No two impls for the same trait are implemented for the
/// same type. Likewise, no two inherent impls for a given type
/// constructor provide a method with the same name.
fn check_impl_overlap<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, node_id: ast::NodeId) {
    let impl_def_id = tcx.hir.local_def_id(node_id);
    let trait_ref = tcx.impl_trait_ref(impl_def_id).unwrap();
    let trait_def_id = trait_ref.def_id;

    if trait_ref.references_error() {
        debug!("coherence: skipping impl {:?} with error {:?}",
               impl_def_id, trait_ref);
        return
    }

    // Trigger building the specialization graph for the trait of this impl.
    // This will detect any overlap errors.
    tcx.specialization_graph_of(trait_def_id);

    // check for overlap with the automatic `impl Trait for Trait`
    if let ty::Dynamic(ref data, ..) = trait_ref.self_ty().sty {
        // This is something like impl Trait1 for Trait2. Illegal
        // if Trait1 is a supertrait of Trait2 or Trait2 is not object safe.

        if data.principal().map_or(true, |p| !tcx.is_object_safe(p.def_id())) {
            // This is an error, but it will be reported by wfcheck.  Ignore it here.
            // This is tested by `coherence-impl-trait-for-trait-object-safe.rs`.
        } else {
            let mut supertrait_def_ids =
                traits::supertrait_def_ids(tcx,
                                           data.principal().unwrap().def_id());
            if supertrait_def_ids.any(|d| d == trait_def_id) {
                let sp = tcx.sess.source_map().def_span(tcx.span_of_impl(impl_def_id).unwrap());
                struct_span_err!(tcx.sess,
                                 sp,
                                 E0371,
                                 "the object type `{}` automatically implements the trait `{}`",
                                 trait_ref.self_ty(),
                                 tcx.item_path_str(trait_def_id))
                    .span_label(sp, format!("`{}` automatically implements trait `{}`",
                                            trait_ref.self_ty(),
                                            tcx.item_path_str(trait_def_id)))
                    .emit();
            }
        }
    }
}